Suppr超能文献

联合高甘油三酯血症患者中评估胰腺炎复发风险的临床预测列线图的开发和验证。

Development and Validation of a Clinical Predictive Nomogram for Assessing the Risk of Recurrence of Acute Pancreatitis in Combined Hypertriglyceridemia.

机构信息

Tianjin Medical University, Tianjin, 300070, China.

Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, Tianjin, 300100, China.

出版信息

Dig Dis Sci. 2024 Sep;69(9):3426-3435. doi: 10.1007/s10620-024-08578-4. Epub 2024 Aug 1.

Abstract

BACKGROUND

The objective of this study is to develop and validate a new nomogram-based scoring system for anticipating the recurrence of acute pancreatitis (AP) in combined hypertriglyceridemia (HTG).

METHODS

A total of 292 patients diagnosed with AP combined with HTG participated in this research. Among them, 201 patients meeting the inclusion criteria were randomly divided into training and validation sets at a ratio of 7:3. Clinical data were collected for all patients. In the training set, predictive indicators were chosen through backward stepwise multivariable logistic regression analysis. Subsequently, a nomogram was developed based on the selected indicators. Finally, the model's performance was validated in both the training and validation sets.

RESULTS

By employing backward stepwise multivariable logistic regression analysis, we identified diabetes, gallstones, alcohol consumption, and triglyceride levels as predictive indicators. Subsequently, a clinical nomogram that incorporates these four independent risk factors was constructed. Model validation demonstrated an AUC of 0.726 (95% CI 0.644-0.809) in the training set and an AUC of 0.712 (95% CI 0.583-0.842) in the validation set, indicating a good discriminative ability. The Hosmer-Lemeshow test yielded P-values of 0.882 and 0.536 in the training and validation sets, respectively, suggesting good calibration. Calibration curves further confirmed good agreement. Ultimately, decision curve analysis (DCA) emphasized the clinical utility of our model.

CONCLUSION

We have developed a nomogram for predicting the recurrence of AP combined with HTG in patients, and this nomogram demonstrates good discriminative ability, calibration, and clinical utility. This tool holds the potential to assist clinicians in offering more personalized treatment strategies for AP combined with HTG.

摘要

背景

本研究旨在开发和验证一种新的基于列线图的评分系统,以预测合并高甘油三酯血症(HTG)的急性胰腺炎(AP)复发。

方法

共纳入 292 例诊断为 AP 合并 HTG 的患者,其中符合纳入标准的 201 例患者按 7:3 的比例随机分为训练集和验证集。收集所有患者的临床资料。在训练集中,通过向后逐步多变量逻辑回归分析选择预测指标,然后根据所选指标建立列线图。最后,在训练集和验证集中验证模型的性能。

结果

采用向后逐步多变量逻辑回归分析,确定糖尿病、胆石症、饮酒和甘油三酯水平为预测指标。随后,构建了一个包含这四个独立危险因素的临床列线图。模型验证显示,在训练集和验证集中 AUC 分别为 0.726(95%CI 0.644-0.809)和 0.712(95%CI 0.583-0.842),表明具有良好的区分能力。Hosmer-Lemeshow 检验在训练集和验证集中的 P 值分别为 0.882 和 0.536,提示良好的校准度。校准曲线进一步证实了良好的一致性。最终,决策曲线分析(DCA)强调了我们模型的临床实用性。

结论

我们开发了一种预测 AP 合并 HTG 患者复发的列线图,该列线图具有良好的区分能力、校准度和临床实用性。该工具有望帮助临床医生为 AP 合并 HTG 患者提供更个性化的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验