Suppr超能文献

大语言模型与OpenLogos:一个教育案例场景

Large Language Models and OpenLogos: An Educational Case Scenario.

作者信息

Pavlova Andrijana, Gerazov Branislav, Barreiro Anabela

机构信息

"Krste Misirkov", UKIM, Institute of Macedonian Language, Skopje, North Macedonia.

UKIM, Faculty of Electrical Engineering and Information Technologies, Skopje, North Macedonia.

出版信息

Open Res Eur. 2024 Jun 5;4:110. doi: 10.12688/openreseurope.17605.1. eCollection 2024.

Abstract

Large Language Models (LLMs) offer advanced text generation capabilities, sometimes surpassing human abilities. However, their use without proper expertise poses significant challenges, particularly in educational contexts. This article explores different facets of natural language generation (NLG) within the educational realm, assessing its advantages and disadvantages, particularly concerning LLMs. It addresses concerns regarding the opacity of LLMs and the potential bias in their generated content, advocating for transparent solutions. Therefore, it examines the feasibility of integrating OpenLogos expert-crafted resources into language generation tools used for paraphrasing and translation. In the context of the Multi3Generation COST Action (CA18231), we have been emphasizing the significance of incorporating OpenLogos into language generation processes, and the need for clear guidelines and ethical standards in generative models involving multilingual, multimodal, and multitasking capabilities. The Multi3Generation initiative strives to progress NLG research for societal welfare, including its educational applications. It promotes inclusive models inspired by the Logos Model, prioritizing transparency, human control, preservation of language principles and meaning, and acknowledgment of the expertise of resource creators. We envision a scenario where OpenLogos can contribute significantly to inclusive AI-supported education. Ethical considerations and limitations related to AI implementation in education are explored, highlighting the importance of maintaining a balanced approach consistent with traditional educational principles. Ultimately, the article advocates for educators to adopt innovative tools and methodologies to foster dynamic learning environments that facilitate linguistic development and growth.

摘要

大型语言模型(LLMs)具备先进的文本生成能力,有时甚至超越人类。然而,在缺乏专业知识的情况下使用它们会带来重大挑战,尤其是在教育环境中。本文探讨了教育领域中自然语言生成(NLG)的不同方面,评估其优缺点,特别是与大型语言模型相关的方面。它解决了对大型语言模型不透明性以及其生成内容中潜在偏差的担忧,倡导采用透明的解决方案。因此,它研究了将OpenLogos专家精心制作的资源整合到用于释义和翻译的语言生成工具中的可行性。在多语言多模态多任务的多3代成本行动(CA18231)的背景下,我们一直在强调将OpenLogos纳入语言生成过程的重要性,以及在涉及多语言、多模态和多任务能力的生成模型中制定明确指导方针和道德标准的必要性。多3代倡议致力于推动自然语言生成研究以造福社会,包括其教育应用。它推广受逻各斯模型启发的包容性模型,优先考虑透明度人类控制、语言原则和意义的保留以及对资源创造者专业知识的认可。我们设想了一种情景,即OpenLogos可以为包容性人工智能支持的教育做出重大贡献。探讨了与人工智能在教育中的实施相关的伦理考量和局限性,强调了保持与传统教育原则一致的平衡方法的重要性。最终,本文倡导教育工作者采用创新工具和方法,以营造促进语言发展和成长的动态学习环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4435/11292179/23c03758afd6/openreseurope-4-19024-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验