Suppr超能文献

医疗管理数据持续数据质量改进的挑战与机遇

The challenges and opportunities of continuous data quality improvement for healthcare administration data.

作者信息

Zhang Yili, Callaghan-Koru Jennifer A, Koru Güneş

机构信息

Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC 20007, United States.

Department of Internal Medicine, University of Arkansas for Medical Sciences, Fayetteville, AR 72703, United States.

出版信息

JAMIA Open. 2024 Aug 1;7(3):ooae058. doi: 10.1093/jamiaopen/ooae058. eCollection 2024 Oct.

Abstract

BACKGROUND

Various data quality issues have prevented healthcare administration data from being fully utilized when dealing with problems ranging from COVID-19 contact tracing to controlling healthcare costs.

OBJECTIVES

(i) Describe the currently adopted approaches and practices for understanding and improving the quality of healthcare administration data. (ii) Explore the challenges and opportunities to achieve continuous quality improvement for such data.

MATERIALS AND METHODS

We used a qualitative approach to obtain rich contextual data through semi-structured interviews conducted at a state health agency regarding Medicaid claims and reimbursement data. We interviewed all data stewards knowledgeable about the data quality issues experienced at the agency. The qualitative data were analyzed using the Framework method.

RESULTS

Sixteen themes emerged from our analysis, collected under 4 categories: (i) Defect characteristics: Data defects showed variability, frequently remained obscure, and led to negative outcomes. Detecting and resolving them was often difficult, and the work required often exceeded the organizational boundaries. (ii) Current process and people issues: The agency adopted primarily ad-hoc, manual approaches to resolving data quality problems leading to work frustration. (iii) Challenges: Communication and lack of knowledge about legacy software systems and the data maintained in them constituted challenges, followed by different standards used by various organizations and vendors, and data verification difficulties. (iv) Opportunities: Training, tool support, and standardization of data definitions emerged as immediate opportunities to improve data quality.

CONCLUSIONS

Our results can be useful to similar agencies on their journey toward becoming learning health organizations leveraging data assets effectively and efficiently.

摘要

背景

在处理从新冠病毒接触者追踪到控制医疗成本等问题时,各种数据质量问题阻碍了医疗管理数据的充分利用。

目的

(i)描述当前为理解和提高医疗管理数据质量所采用的方法和实践。(ii)探索实现此类数据持续质量改进的挑战和机遇。

材料与方法

我们采用定性方法,通过在一家州卫生机构就医疗补助申请和报销数据进行的半结构化访谈来获取丰富的背景数据。我们采访了所有了解该机构所经历数据质量问题的数据管理员。使用框架法对定性数据进行分析。

结果

我们的分析得出了16个主题,分为4类:(i)缺陷特征:数据缺陷表现出变异性,常常难以发现,且会导致负面结果。检测和解决这些问题通常很困难,所需工作常常超出组织边界。(ii)当前流程和人员问题:该机构主要采用临时的、手动的方法来解决数据质量问题,导致工作受挫。(iii)挑战:关于遗留软件系统及其所维护数据的沟通和知识匮乏构成挑战,其次是各组织和供应商使用的不同标准以及数据验证困难。(iv)机遇:培训、工具支持和数据定义标准化成为改善数据质量的直接机遇。

结论

我们的结果对于类似机构在有效且高效利用数据资产迈向学习型健康组织的过程中可能会有所帮助。

相似文献

3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
9

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验