Suppr超能文献

探索代谢功能障碍相关脂肪性肝病的非侵入性诊断方法。

Exploring non-invasive diagnostics for metabolic dysfunction-associated fatty liver disease.

机构信息

Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China.

Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, Jiangsu Province, China.

出版信息

World J Gastroenterol. 2024 Jul 28;30(28):3447-3451. doi: 10.3748/wjg.v30.i28.3447.

Abstract

The population with metabolic dysfunction-associated fatty liver disease (MAFLD) is increasingly common worldwide. Identification of people at risk of progression to advanced stages is necessary to timely offer interventions and appropriate care. Liver biopsy is currently considered the gold standard for the diagnosis and staging of MAFLD, but it has associated risks and limitations. This has spurred the exploration of non-invasive diagnostics for MAFLD, especially for steatohepatitis and fibrosis. These non-invasive approaches mostly include biomarkers and algorithms derived from anthropometric measurements, serum tests, imaging or stool metagenome profiling. However, they still need rigorous and widespread clinical validation for the diagnostic performance.

摘要

代谢相关脂肪性肝病(MAFLD)患者在全球范围内日益增多。识别有进展为晚期风险的人群对于及时提供干预和适当的护理是必要的。肝活检目前被认为是 MAFLD 诊断和分期的金标准,但它存在相关风险和局限性。这促使人们探索 MAFLD 的非侵入性诊断方法,特别是针对脂肪性肝炎和纤维化。这些非侵入性方法主要包括来自人体测量、血清检测、影像学或粪便宏基因组分析的生物标志物和算法。然而,它们仍然需要进行严格和广泛的临床验证,以评估其诊断性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验