Suppr超能文献

部分自交情况下的亲本效应基因驱动元件,或者说基因组为何存在超分歧区域?

Parental-effect gene-drive elements under partial selfing, or why do genomes have hyperdivergent regions?

作者信息

Rockman Matthew V

机构信息

Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003.

出版信息

bioRxiv. 2024 Jul 24:2024.07.23.604817. doi: 10.1101/2024.07.23.604817.

Abstract

Self-fertile nematodes carry a surprising number of elements, alleles that act in heterozygous mothers and cause death or developmental delay in offspring that don't inherit them. At some loci, both alleles in a cross operate as independent , affecting all the homozygous progeny of a selfing heterozygote. The genomic coincidence of elements and ancient, deeply coalescing haplotypes, which pepper the otherwise homogeneous genomes of these animals, raises questions about how these apparent gene-drive elements persist for long periods of time. Here I investigate how mating system affects the evolution of , and their paternal-effect counterparts, . Despite an intuition that antagonistic alleles should induce balancing selection by killing homozygotes, models show that, under partial selfing, antagonistic elements experience positive frequency dependence: the common allele drives the rare one extinct, even if the rare one is more penetrant. Analytical results for the threshold frequency required for one allele to invade a population show that a very weakly penetrant allele, one whose effects would escape laboratory detection, could nevertheless prevent a much more penetrant allele from invading under high rates of selfing. Ubiquitous weak antagonistic and could then act as localized barriers to gene flow between populations, generating genomic islands of deep coalescence. Analysis of gene expression data, however, suggest that this cannot be the whole story. A complementary explanation is that ordinary ecological balancing selection generates ancient haplotypes on which can evolve, while high homozygosity in these selfers minimizes the role of gene drive in their evolution.

摘要

自交可育的线虫携带数量惊人的元件,这些等位基因在杂合的母本中起作用,并导致未继承它们的后代死亡或发育延迟。在某些基因座上,杂交中的两个等位基因独立起作用,影响自交杂合子的所有纯合后代。元件与古老的、深度聚合的单倍型在基因组中的巧合,这些单倍型散布在这些动物原本同质化的基因组中,引发了关于这些明显的基因驱动元件如何长期持续存在的问题。在这里,我研究交配系统如何影响元件及其父本效应对应物的进化。尽管直觉上认为拮抗等位基因会通过杀死纯合子来诱导平衡选择,但模型表明,在部分自交的情况下,拮抗元件经历正频率依赖性:常见等位基因会将罕见等位基因驱动至灭绝,即使罕见等位基因的穿透性更强。一个等位基因入侵种群所需的阈值频率的分析结果表明,一个穿透性非常弱的等位基因,其效应在实验室检测中可能会被忽略,但在高自交率下仍可能阻止一个穿透性更强的等位基因入侵。无处不在的弱拮抗元件然后可以作为种群间基因流动的局部障碍,产生深度聚合的基因组岛。然而,对基因表达数据的分析表明,情况可能并非如此简单。一个补充解释是,普通的生态平衡选择产生了古老的单倍型,元件可以在其上进化,而这些自交生物的高纯合性使基因驱动在其进化中的作用最小化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d21/11291142/3979669da22d/nihpp-2024.07.23.604817v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验