Rockman Matthew V
Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA.
Genetics. 2025 Jan 8;229(1):1-36. doi: 10.1093/genetics/iyae175.
Self-fertile Caenorhabditis nematodes carry a surprising number of Medea elements, alleles that act in heterozygous mothers and cause death or developmental delay in offspring that do not inherit them. At some loci, both alleles in a cross operate as independent Medeas, affecting all the homozygous progeny of a selfing heterozygote. The genomic coincidence of Medea elements and ancient, deeply coalescing haplotypes, which pepper the otherwise homogeneous genomes of these animals, raises questions about how these apparent gene-drive elements persist for long periods of time. Here, I investigate how mating system affects the evolution of Medeas, and their paternal-effect counterparts, peels. Despite an intuition that antagonistic alleles should induce balancing selection by killing homozygotes, models show that, under partial selfing, antagonistic elements experience positive frequency dependence: the common allele drives the rare one extinct, even if the rare one is more penetrant. Analytical results for the threshold frequency required for one allele to invade a population show that a very weakly penetrant allele, one whose effects would escape laboratory detection, could nevertheless prevent a much more penetrant allele from invading under high rates of selfing. Ubiquitous weak antagonistic Medeas and peels could then act as localized barriers to gene flow between populations, generating genomic islands of deep coalescence. Analysis of gene expression data, however, suggests that this cannot be the whole story. A complementary explanation is that ordinary ecological balancing selection generates ancient haplotypes on which Medeas can evolve, while high homozygosity in these selfers minimizes the role of gene drive in their evolution.
自交可育的秀丽隐杆线虫携带数量惊人的“美狄亚”元件,这些等位基因在杂合母亲体内起作用,会导致未继承它们的后代死亡或发育延迟。在某些位点,杂交中的两个等位基因都作为独立的“美狄亚”元件起作用,影响自交杂合子的所有纯合后代。“美狄亚”元件与古老的、深度聚合的单倍型在基因组上的巧合,这些单倍型散布在这些动物原本同质化的基因组中,引发了关于这些明显的基因驱动元件如何长期存在的问题。在这里,我研究了交配系统如何影响“美狄亚”元件及其父本效应对应物“果皮”元件的进化。尽管直觉上认为拮抗等位基因应该通过杀死纯合子来诱导平衡选择,但模型表明,在部分自交的情况下,拮抗元件会经历正频率依赖性:常见等位基因会驱使罕见等位基因灭绝,即使罕见等位基因的效应更强。一个等位基因入侵种群所需阈值频率的分析结果表明,一个效应非常微弱、其效应在实验室检测中可能会被忽略的等位基因,在高自交率下却能阻止一个效应更强的等位基因入侵。无处不在的弱拮抗“美狄亚”元件和“果皮”元件可能会作为种群间基因流动的局部障碍,产生深度聚合的基因组岛。然而,对基因表达数据的分析表明,情况可能并非如此简单。一个补充性的解释是,普通的生态平衡选择产生了“美狄亚”元件能够在其上进化的古老单倍型,而这些自交可育线虫的高纯合性则将基因驱动在其进化中的作用降至最低。