Wright Adam M, Xu Tianyin, Ingram Jacob, Koo John, Zhao Yi, Tong Yunjie, Wen Qiuting
bioRxiv. 2024 Jul 22:2024.07.17.603932. doi: 10.1101/2024.07.17.603932.
Functional magnetic resonance imaging (fMRI) captures rich physiological and neuronal information that can offer insights into neurofluid dynamics, vascular health, and waste clearance function. The availability of cerebral vessel segmentation could facilitate fluid dynamics research in fMRI. However, without magnetic resonance angiography scans, cerebral vessel segmentation is challenging and time-consuming. This study leverages cardiac-induced pulsatile fMRI signal to develop a data-driven, automatic segmentation of large cerebral arteries and the superior sagittal sinus (SSS). The method was validated in a local dataset by comparing it to ground truth cerebral artery and SSS segmentations. Using the Human Connectome Project (HCP) aging dataset, the method's reproducibility was tested on 422 participants aged 36 to 100 years, each with four repeated fMRI scans. The method demonstrated high reproducibility, with an intraclass correlation coefficient > 0.7 in both cerebral artery and SSS segmentation volumes. This study demonstrates that the large cerebral arteries and SSS can be reproducibly and automatically segmented in fMRI datasets, facilitating the investigation of fluid dynamics in these regions.
功能磁共振成像(fMRI)可捕捉丰富的生理和神经元信息,这些信息有助于深入了解神经流体动力学、血管健康和废物清除功能。脑血流灌注成像中脑血管分割的可用性有助于流体动力学研究。然而,在没有磁共振血管造影扫描的情况下,脑血管分割具有挑战性且耗时。本研究利用心脏诱发的脉动fMRI信号,开发了一种数据驱动的自动分割大脑大动脉和上矢状窦(SSS)的方法。通过将该方法与大脑动脉和SSS的真实分割结果进行比较,在本地数据集中对该方法进行了验证。使用人类连接组计划(HCP)衰老数据集,在422名年龄在36至100岁之间的参与者中测试了该方法的可重复性,每位参与者进行了四次重复的fMRI扫描。该方法显示出高可重复性,大脑动脉和SSS分割体积的组内相关系数均>0.7。本研究表明,在fMRI数据集中可以对大脑大动脉和SSS进行可重复且自动的分割,便于对这些区域的流体动力学进行研究。