Wright Adam M, Xu Tianyin, Ingram Jacob, Koo John, Zhao Yi, Tong Yunjie, Wen Qiuting
Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
Weldon School of Biomedical Engineering Department, Purdue University, West Lafayette, IN, USA.
Interface Focus. 2024 Dec 6;14(6):20240024. doi: 10.1098/rsfs.2024.0024.
Functional magnetic resonance imaging (fMRI) captures rich physiological and neuronal information, offering insight into neurofluid dynamics, vascular health and waste clearance. Accurate cerebral vessel segmentation could greatly facilitate fluid dynamics research in fMRI. However, existing vessel identification methods, such as magnetic resonance angiography or deep-learning-based segmentation on structural MRI, cannot reliably locate cerebral vessels in fMRI space due to misregistration from inherent fMRI distortions. To address this challenge, we developed a data-driven, automatic segmentation of cerebral vessels directly within fMRI space. This approach identified large cerebral arteries and the superior sagittal sinus (SSS) by leveraging these vessels' distinct pulsatile signal patterns during the cardiac cycle. The method was validated in a local dataset by comparing it to ground truth cerebral artery and SSS segmentations. Using the Human Connectome Project (HCP) ageing dataset, the method's reproducibility was tested on 422 participants aged 36-90, each with four repeated fMRI scans. The method demonstrated high reproducibility, with an intraclass correlation coefficient > 0.7 in both cerebral artery and SSS segmentation volumes. This study demonstrates that large cerebral arteries and SSS can be reproducibly and automatically segmented in fMRI datasets, facilitating reliable fluid dynamics investigation in these regions.
功能磁共振成像(fMRI)可捕捉丰富的生理和神经元信息,有助于深入了解神经流体动力学、血管健康和废物清除情况。准确的脑血管分割能够极大地促进fMRI中的流体动力学研究。然而,现有的血管识别方法,如磁共振血管造影或基于深度学习的结构MRI分割,由于fMRI固有畸变导致的配准错误,无法在fMRI空间中可靠地定位脑血管。为应对这一挑战,我们开发了一种数据驱动的方法,可直接在fMRI空间内自动分割脑血管。该方法通过利用这些血管在心动周期中独特的搏动信号模式来识别大脑大动脉和上矢状窦(SSS)。通过将该方法与大脑动脉和SSS的真实分割结果进行比较,在一个本地数据集中对其进行了验证。使用人类连接组计划(HCP)衰老数据集,在422名年龄在36 - 90岁之间的参与者身上测试了该方法的可重复性,每位参与者有四次重复的fMRI扫描。该方法显示出高可重复性,大脑动脉和SSS分割体积的组内相关系数均> 0.7。这项研究表明,在fMRI数据集中可以对大脑大动脉和SSS进行可重复的自动分割,有助于对这些区域进行可靠的流体动力学研究。