Gorantla Sivahari P, Prince Gerin, Osius Jasmin, Dinesh Dhurvas Chandrasekaran, Boddu Vijay, Duyster Justus, von Bubnoff Nikolas
Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany.
Department of Internal Medicine I, University Medical Center Freiburg, Freiburg, Germany.
Front Oncol. 2024 Jul 18;14:1430833. doi: 10.3389/fonc.2024.1430833. eCollection 2024.
Ruxolitinib has been approved by the US FDA for the treatment of myeloproliferative neoplasms such as polycythemia vera and primary myelofibrosis. Ruxolitinib will remain a main stay in the treatment of MPN patients due to its effective therapeutic benefits. However, there have been instances of ruxolitinib resistance in MPN patients. As JAK2 is a direct target of ruxolitinib, we generated ruxolitinib-resistant clones to find out the mechanism of resistance.
Cell-based screening strategy was used to detect the ruxolitinib-resistant mutations in JAK2. The Sanger sequencing method was used to detect the point mutations in JAK2. Mutations were re-introduced using the site-directed mutagenesis method and stably expressed in Ba/F3 cells. Drug sensitivities against the JAK2 inhibitors were measured using an MTS-based assay. JAK2 and STAT5 activation levels and total proteins were measured using immunoblotting. Computational docking studies were performed using the Glide module of Schrodinger Maestro software.
In this study, we have recovered seven residues in the kinase domain of JAK2 that affect ruxolitinib sensitivity. All these mutations confer cross-resistance across the panel of JAK2 kinase inhibitors except JAK2-L983F. JAK2-L983F reduces the sensitivity towards ruxolitinib. However, it is sensitive towards fedratinib indicating that our screen identifies the drug-specific resistance profiles. All the ruxolitinib-resistant JAK2 variants displayed sensitivity towards type II JAK2 inhibitor CHZ-868. In this study, we also found that JAK1-L1010F (homologous JAK2-L983F) is highly resistant towards ruxolitinib suggesting the possibility of JAK1 escape mutations in JAK2-driven MPNs and JAK1 mutated ALL. Finally, our study also shows that HSP90 inhibitors are potent against ruxolitinib-resistant variants through the JAK2 degradation and provides the rationale for clinical evaluation of potent HSP90 inhibitors in genetic resistance driven by JAK2 inhibitors.
Our study identifies JAK1 and JAK2 resistance variants against the type I JAK2 inhibitors ruxolitinib, fedratinib, and lestaurtinib. The sensitivity of these resistant variants towards the type II JAK2 inhibitor CHZ-868 indicates that this mode of type II JAK2 inhibition is a potential therapeutic approach against ruxolitinib refractory leukemia. This also proposes the development of potent and specific type II JAK2 inhibitors using ruxolitinib-resistance variants as a prototype.
鲁索替尼已获美国食品药品监督管理局(FDA)批准用于治疗真性红细胞增多症和原发性骨髓纤维化等骨髓增殖性肿瘤。由于其有效的治疗效果,鲁索替尼仍将是骨髓增殖性肿瘤患者治疗的主要药物。然而,骨髓增殖性肿瘤患者中存在鲁索替尼耐药的情况。由于JAK2是鲁索替尼的直接靶点,我们构建了鲁索替尼耐药克隆以探究耐药机制。
采用基于细胞的筛选策略检测JAK2中鲁索替尼耐药突变。使用桑格测序法检测JAK2中的点突变。通过定点诱变方法重新引入突变并在Ba/F3细胞中稳定表达。使用基于MTS的检测方法测量对JAK2抑制剂的药物敏感性。使用免疫印迹法测量JAK2和STAT5的激活水平及总蛋白。使用Schrodinger Maestro软件的Glide模块进行计算对接研究。
在本研究中,我们在JAK2的激酶结构域中发现了7个影响鲁索替尼敏感性的残基。除JAK2-L983F外,所有这些突变均导致对一组JAK2激酶抑制剂产生交叉耐药。JAK2-L983F降低了对鲁索替尼的敏感性。然而,它对费达替尼敏感,这表明我们的筛选确定了药物特异性耐药谱。所有鲁索替尼耐药的JAK2变体对II型JAK2抑制剂CHZ-868均敏感。在本研究中,我们还发现JAK1-L1010F(与JAK2-L983F同源)对鲁索替尼高度耐药,这表明在JAK2驱动的骨髓增殖性肿瘤和JAK1突变的急性淋巴细胞白血病中存在JAK1逃逸突变的可能性。最后,我们的研究还表明,HSP90抑制剂可通过JAK2降解有效对抗鲁索替尼耐药变体,并为在JAK2抑制剂导致的基因耐药中对强效HSP90抑制剂进行临床评估提供了理论依据。
我们的研究确定了针对I型JAK2抑制剂鲁索替尼、费达替尼和来他替尼的JAK1和JAK2耐药变体。这些耐药变体对II型JAK2抑制剂CHZ-868的敏感性表明,这种II型JAK2抑制模式是治疗鲁索替尼难治性白血病的一种潜在治疗方法。这也提出了以鲁索替尼耐药变体为原型开发强效且特异性的II型JAK2抑制剂的建议。