Suppr超能文献

淋巴细胞中的谷氨酰胺代谢:其生化、生理及临床重要性。

Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance.

作者信息

Newsholme E A, Crabtree B, Ardawi M S

出版信息

Q J Exp Physiol. 1985 Oct;70(4):473-89. doi: 10.1113/expphysiol.1985.sp002935.

Abstract

Glutamine is utilized at a high rate (fourfold higher than that of glucose) by isolated incubated lymphocytes and produces glutamate, aspartate, lactate and ammonia. The pathway for glutamine metabolism includes the reactions catalysed by glutaminase, aspartate aminotransferase, oxoglutarate dehydrogenase, succinate dehydrogenase, fumarase, malate dehydrogenase and phosphoenolpyruvate carboxykinase. In fact little if any of the carbon of the glutamine that is used is converted to acetyl-CoA for complete oxidation. For this reason, the oxidation of glutamine is only partial and, in an analogous manner to the terminology used to describe the partial oxidation of glucose to lactate as glycolysis, the term glutaminolysis is used to describe the process of partial glutamine oxidation. The role of glutaminolysis in lymphocytes and perhaps other rapidly dividing cells is to provide both nitrogen and carbon for precursors for synthesis of macromolecules (e.g. purines and pyrimidines for DNA and RNA) and also energy. However, the rate of glutamine utilization by lymphocytes is markedly in excess of the precursor requirements (which are at most 4%) and if glutamine was vitally important in energy production it would be expected that more would be converted to acetyl-CoA for complete oxidation via the Krebs cycle. Indeed most of the energy for lymphocytes may be obtained by the complete oxidation of fatty acids and ketone bodies. Consequently the role of the high rate of glutaminolysis in lymphocytes and other rapidly dividing cells may be identical to that of glycolysis: the high rates provide ideal conditions for the precise and sensitive control of the rate of use of the intermediates of these pathways for biosynthesis when required. High rates of glycolysis and glutaminolysis can be seen as part of a mechanism of control to permit synthesis of macromolecules when required without any need for extracellular signals to make more glucose or glutamine available for these cells. In order to maintain a high rate of glutaminolysis despite fluctuation in the plasma level of glutamine, the flux through the glutaminolytic pathway can be controlled and the key processes in the lymphocyte that may play a role in this process include glutamine transport across the cell and mitochondrial membranes, glutaminase and oxoglutarate dehydrogenase. Changes in the intracellular concentration of Ca2+ may play a role in control of one or more of these reactions.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

离体培养的淋巴细胞对谷氨酰胺的利用率很高(比葡萄糖高四倍),并产生谷氨酸、天冬氨酸、乳酸和氨。谷氨酰胺代谢途径包括由谷氨酰胺酶、天冬氨酸转氨酶、氧代戊二酸脱氢酶、琥珀酸脱氢酶、延胡索酸酶、苹果酸脱氢酶和磷酸烯醇丙酮酸羧激酶催化的反应。实际上,所利用的谷氨酰胺中几乎没有碳被转化为乙酰辅酶A进行完全氧化。因此,谷氨酰胺的氧化只是部分氧化,类似于将葡萄糖部分氧化为乳酸的糖酵解术语,谷氨酰胺分解这一术语用于描述谷氨酰胺部分氧化的过程。谷氨酰胺分解在淋巴细胞以及可能其他快速分裂细胞中的作用是为大分子合成(如DNA和RNA的嘌呤和嘧啶)的前体提供氮和碳,同时也提供能量。然而,淋巴细胞对谷氨酰胺的利用率明显超过前体需求(最多为4%),如果谷氨酰胺在能量产生中至关重要,预计会有更多谷氨酰胺通过三羧酸循环转化为乙酰辅酶A进行完全氧化。事实上,淋巴细胞的大部分能量可能通过脂肪酸和酮体的完全氧化获得。因此,淋巴细胞和其他快速分裂细胞中谷氨酰胺分解的高速度的作用可能与糖酵解相同:高速度为在需要时精确而敏感地控制这些途径的中间产物用于生物合成的速率提供了理想条件。高速度的糖酵解和谷氨酰胺分解可被视为一种控制机制的一部分,以允许在需要时合成大分子,而无需细胞外信号来为这些细胞提供更多的葡萄糖或谷氨酰胺。为了在血浆谷氨酰胺水平波动的情况下维持高速度的谷氨酰胺分解,谷氨酰胺分解途径的通量可以得到控制,淋巴细胞中可能参与这一过程的关键过程包括谷氨酰胺跨细胞膜和线粒体膜的转运、谷氨酰胺酶和氧代戊二酸脱氢酶。细胞内Ca2+浓度的变化可能在控制这些反应中的一个或多个反应中起作用。(摘要截断于400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验