Lee Yunjeong, Jhun Byung Hak, Woo Sihyun, Kim Seoyeon, Bae Jaehan, You Youngmin, Cho Eun Jin
Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
Chem Sci. 2024 Jun 28;15(30):12058-12066. doi: 10.1039/d4sc02601b. eCollection 2024 Jul 31.
Synthetic photochemistry has undergone significant development, largely owing to the development of visible-light-absorbing photocatalysts (PCs). PCs have significantly improved the efficiency and precision of cycloaddition reactions, primarily through energy or electron transfer pathways. Recent research has identified photocatalysis that does not follow energy- or electron-transfer formalisms, indicating the existence of other, undiscovered photoactivation pathways. This study unveils an alternative route: a charge-neutral photocatalytic process called charge-recombinative triplet sensitization (CRTS), a mechanism with limited precedents in synthetic chemistry. Our investigations revealed CRTS occurrence in DeMayo-type [2 + 2] cycloaddition reactions catalyzed by indole-fused organoPCs. Our mechanistic investigations, including steady-state and transient spectroscopic analyses, electrochemical investigations, and quantum chemical calculations, suggest a mechanism involving substrate activation through photoinduced electron transfer, followed by charge recombination, leading to substrate triplet state formation. Our findings provide valuable insights into the underlying photocatalytic reaction mechanisms and pave the way for the systematic design and realization of innovative photochemical processes.
合成光化学已经取得了显著进展,这主要归功于可见光吸收光催化剂(PCs)的发展。光催化剂主要通过能量或电子转移途径,显著提高了环加成反应的效率和精度。最近的研究发现了不符合能量或电子转移形式的光催化作用,这表明存在其他未被发现的光活化途径。本研究揭示了一条替代途径:一种称为电荷复合三重态敏化(CRTS)的电荷中性光催化过程,这是一种在合成化学中先例有限的机制。我们的研究表明CRTS发生在由吲哚稠合有机光催化剂催化的德 Mayo 型[2 + 2]环加成反应中。我们的机理研究,包括稳态和瞬态光谱分析、电化学研究和量子化学计算,提出了一种机制,即通过光诱导电子转移激活底物,随后电荷复合,导致底物三重态形成。我们的发现为潜在的光催化反应机制提供了有价值的见解,并为创新光化学过程的系统设计和实现铺平了道路。