Department of Chemistry, Columbia University, New York, NY, USA.
Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.
Nat Chem. 2023 Jan;15(1):101-109. doi: 10.1038/s41557-022-01057-1. Epub 2022 Oct 10.
State-of-the-art photoactivation strategies in chemical biology provide spatiotemporal control and visualization of biological processes. However, using high-energy light (λ < 500 nm) for substrate or photocatalyst sensitization can lead to background activation of photoactive small-molecule probes and reduce its efficacy in complex biological environments. Here we describe the development of targeted aryl azide activation via deep red-light (λ = 660 nm) photoredox catalysis and its use in photocatalysed proximity labelling. We demonstrate that aryl azides are converted to triplet nitrenes via a redox-centric mechanism and show that its spatially localized formation requires both red light and a photocatalyst-targeting modality. This technology was applied in different colon cancer cell systems for targeted protein environment labelling of epithelial cell adhesion molecule (EpCAM). We identified a small subset of proteins with previously known and unknown association to EpCAM, including CDH3, a clinically relevant protein that shares high tumour-selective expression with EpCAM.
化学生物学中的最新光活化策略提供了对生物过程的时空控制和可视化。然而,使用高能光(λ < 500nm)对底物或光催化剂进行敏化会导致光活性小分子探针的背景活化,并降低其在复杂生物环境中的功效。在这里,我们描述了通过深红光(λ=660nm)光氧化还原催化靶向芳基叠氮化物的活化及其在光催化邻近标记中的应用。我们证明芳基叠氮化物通过氧化还原中心机制转化为三重态氮烯,并表明其空间局部形成需要红光和光催化剂靶向模式。该技术应用于不同的结肠癌细胞系统中,用于上皮细胞黏附分子(EpCAM)的靶向蛋白质环境标记。我们鉴定出一小部分以前已知和未知与 EpCAM 相关的蛋白质,包括 CDH3,这是一种与 EpCAM 具有高肿瘤选择性表达的临床相关蛋白。