Yang Wenbang, White Andrew J P, Crimmin Mark R
Department of Chemistry, Molecular Sciences Research Hub 82 Wood Lane, Shepherds Bush London W12 0BZ UK
Chem Sci. 2024 Jun 24;15(30):11807-11813. doi: 10.1039/d4sc02638a. eCollection 2024 Jul 31.
Sequential addition of CNXyl (Xyl = 2,6-dimethylphenyl) and CO to a tetrametallic magnesium hydride cluster results in stepwise reduction and cross-coupling of these substrates. Cross-coupling results in the formation of an ethene amidolate ligand [OC(H)[double bond, length as m-dash]C(H)NAr] a previously unknown entity which contains a 1,2-difunctionalised carbon chain reminiscent of those found in aminoalcohols and amino acids. To the best of our knowledge, this is the first example of such reactivity with metal hydride precursors. DFT calculations support a mechanism that parallels that established for coupling of CO to form ethenediolate ligands, with the key carbon-carbon bond step occurring by nucleophilic attack of a putative azamethylene intermediate on CO. The cluster plays a key role in templating the synthesis, providing kinetic control over each of the steps. The ethene amidolate ligand can be transferred to other metals (Al) and semi-metals (B) through onwards metathesis reactions.
将CNXyl(Xyl = 2,6 - 二甲基苯基)和CO依次添加到一个四金属氢化镁簇中,会导致这些底物逐步还原和交叉偶联。交叉偶联生成了一种乙烯酰胺酸酯配体[OC(H)=C(H)NAr],这是一种前所未知的实体,它含有一个1,2 - 双官能化碳链,让人联想到在氨基醇和氨基酸中发现的碳链。据我们所知,这是金属氢化物前体发生此类反应的首个实例。密度泛函理论计算支持一种与已确立的用于CO偶联形成乙烯二醇酸酯配体的机制类似的机制,关键的碳 - 碳键形成步骤是由一个假定的氮杂亚甲基中间体对CO进行亲核攻击而发生的。该簇在模板合成中起关键作用,对每个步骤提供动力学控制。乙烯酰胺酸酯配体可以通过后续的复分解反应转移到其他金属(Al)和半金属(B)上。