Suppr超能文献

基于图时空特征和S-堆叠组合重构的短期风电场集群功率点区间预测

Short-term wind farm cluster power point-interval prediction based on graph spatio-temporal features and S-Stacking combined reconstruction.

作者信息

Hou Xinxing, Hu Wenbo, Luo Maomao

机构信息

GongQing Institute of Science and Technology, Gongqingcheng, 332020, China.

State Grid Jiangxi Electric Power Co., Ltd, Nanchang City, Qingshanhu District Power Supply Branch Company, Nanchang, 330001, China.

出版信息

Heliyon. 2024 Jul 6;10(14):e33945. doi: 10.1016/j.heliyon.2024.e33945. eCollection 2024 Jul 30.

Abstract

Wind energy is becoming increasingly competitive, Accurate and reliable multi-engine wind power forecasts can reduce power system operating costs and improve wind power consumption capacity. Existing research on wind power forecasting has neglected the importance of interval forecasting using clusters of wind farms to capture spatial characteristics and the objective selection of forecasting sub-learners, leading to increased uncertainty and risk in system operation. This paper proposes a new "decomposition-aggregation-multi-model parallel prediction" method. The data set is pre-processed by a decomposition-aggregation strategy and spatial feature extraction, and then a Stacking model with multiple parallel sub-learners selected by bootstrap method is used for point and interval forecasting. Experiments and discussions are conducted based on 15-min resolution wind power data from a cluster dataset of a wind farm in northwest China. The experimental results indicate that the method achieves higher accuracy and reliability in both point prediction and interval prediction than other comparative models, with a root mean square error value of 7.47 and an average F value of 1.572, which can provide a reliable reference for power generation planning from wind farm clusters.

摘要

风能的竞争力日益增强,准确可靠的多机组风电功率预测能够降低电力系统运营成本并提高风电消纳能力。现有的风电功率预测研究忽略了利用风电场集群进行区间预测以捕捉空间特征以及客观选择预测子学习器的重要性,导致系统运行中的不确定性和风险增加。本文提出了一种新的“分解-聚合-多模型并行预测”方法。通过分解-聚合策略和空间特征提取对数据集进行预处理,然后使用通过自助法选择的多个并行子学习器的Stacking模型进行点预测和区间预测。基于中国西北部某风电场集群数据集15分钟分辨率的风电功率数据进行了实验和讨论。实验结果表明,该方法在点预测和区间预测方面均比其他对比模型具有更高的准确性和可靠性,均方根误差值为7.47,平均F值为1.572,可为风电场集群的发电规划提供可靠参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fb6/11292254/c9a7adcb9ec8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验