Fleta-Asín Jorge, Muñoz Fernando, Sáenz-Royo Carlos
IEDIS. Departamento de Dirección y Organización de Empresas, Facultad de Economía y Empresa, Gran Vía, 2, 50005, Zaragoza, Spain.
Expert from the SIP Foundation, Zaragoza, Spain.
MethodsX. 2024 Jul 3;13:102833. doi: 10.1016/j.mex.2024.102833. eCollection 2024 Dec.
In this article, we present a methodological approach to address spatial disparity in global data representation, introducing an algorithm called Flexible Mapping to Understand Spatial Analysis (FLEMUSA). We utilize world maps to depict various data points across countries, revealing substantial variation among them. However, conventional choropleth maps often fail to effectively represent regions with sparse data, obscuring valuable insights. To mitigate this issue, we propose interactive graphical methods in both two and three dimensions, implemented through open-source Python code accessible via Google Colab. Our approach includes several contributions such as excluding countries without data from the representation, scaling magnitudes within country borders, focusing on regional analysis, and using logarithmic scales for bubble maps proportional to country sizes. Additionally, we offer interactive 2D and 3D representations, rotatable 3D representations, and zoomable options, facilitating enhanced visualization of regional similarities amidst data heterogeneity. Through this algorithm, we aim to improve the clarity and interpretability of spatial data analysis, integrating solutions for extreme data overdispersion, all programmed with open-source code.-Utilization of world maps for visual representation of data across countries mitigating the overdispersion step by step.-Implementation of graphical methods, including interactive 2D and 3D maps, to address spatial disparity.-Provision of open-source code for customizable graphical representations, facilitating implementation in online journals as interactive code snippets.
在本文中,我们提出了一种解决全球数据表示中空间差异的方法,引入了一种名为“灵活映射以理解空间分析”(FLEMUSA)的算法。我们利用世界地图来描绘各国的各种数据点,揭示它们之间的巨大差异。然而,传统的分级统计图往往无法有效表示数据稀疏的地区,从而掩盖了有价值的见解。为了缓解这个问题,我们提出了二维和三维的交互式图形方法,通过可通过谷歌Colab访问的开源Python代码来实现。我们的方法包括多项贡献,例如在表示中排除没有数据的国家,在国界内缩放数值大小,专注于区域分析,以及在气泡图中使用与国家大小成比例的对数尺度。此外,我们提供交互式二维和三维表示、可旋转的三维表示以及可缩放选项,便于在数据异质性中增强对区域相似性的可视化。通过这种算法,我们旨在提高空间数据分析的清晰度和可解释性,整合极端数据过度分散的解决方案,所有这些都用开源代码编程。 - 利用世界地图直观呈现各国数据,逐步缓解过度分散。 - 实施图形方法,包括交互式二维和三维地图,以解决空间差异。 - 提供用于可定制图形表示的开源代码,便于在在线期刊中作为交互式代码片段实施。