Suppr超能文献

使用Azure Kinect和OpenPose估计亲子互动场景中的人体三维姿态

Estimation of human body 3D pose for parent-infant interaction settings using azure Kinect and OpenPose.

作者信息

Diaz-Rojas Françoise, Myowa Masako

机构信息

Graduate School of Education, Kyoto University.

出版信息

MethodsX. 2024 Jul 11;13:102861. doi: 10.1016/j.mex.2024.102861. eCollection 2024 Dec.

Abstract

Automatic pose estimation has become a valuable tool for the study of human behavior, including dyadic interactions. It allows researchers to analyze the nuanced dynamics of interactions more effectively, and facilitates the integration of behavioral data with other modalities (EEG, etc.). However, many technical difficulties remain. Particularly, for parent-infant interactions, automatic pose estimation for infants is unpredictable; the immature proportions and smaller bodies of children may cause misdetections. OpenPose is one tool that has shown high performance in pose tracking from video, even in infants. However, OpenPose is limited to 2D (i.e., coordinates relative to the image space). This may be undesirable in a multitude of paradigms (e.g., naturalistic settings). We developed a method for expanding the functionality of OpenPose to 3D, tailored to parent-infant interaction paradigms. This method merges the estimations from OpenPose with the depth information from a depth camera to obtain a 3D pose that works even for young infants.•Video recordings of interactions of parents and infants are taken using a dual color-depth camera.•2D-positions of parents and their infants are estimated from the color video.•Using the depth camera, we transform the 2D estimations into real-world 3D positions, allowing movement analysis in full-3D space.

摘要

自动姿势估计已成为研究人类行为(包括二元互动)的一项有价值的工具。它使研究人员能够更有效地分析互动中细微的动态变化,并促进行为数据与其他模态(脑电图等)的整合。然而,仍然存在许多技术难题。特别是对于亲子互动而言,婴儿的自动姿势估计是不可预测的;儿童不成熟的身体比例和较小的体型可能会导致误检测。OpenPose是一种在视频姿势跟踪方面表现出色的工具,即使在婴儿身上也是如此。然而,OpenPose仅限于二维(即相对于图像空间的坐标)。在许多范式(例如自然环境)中,这可能并不理想。我们开发了一种方法,将OpenPose的功能扩展到三维,专门针对亲子互动范式。该方法将OpenPose的估计结果与深度相机的深度信息合并,以获得即使对幼儿也有效的三维姿势。

• 使用双色深度相机拍摄亲子互动的视频记录。

• 从彩色视频中估计父母及其婴儿的二维位置。

• 使用深度相机,我们将二维估计转换为真实世界的三维位置,从而在全三维空间中进行运动分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/476b/11293583/d9330a75fa94/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验