Du Juan, Han Qinghui, Chen Yuanyuan, Peng Mengke, Xie Lei, Chen Aibing
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, 050018, Shijiazhuang, P. R. China.
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, Xi'an, P. R. China.
Angew Chem Int Ed Engl. 2024 Dec 9;63(50):e202411066. doi: 10.1002/anie.202411066. Epub 2024 Oct 28.
Energy storage in supercapacitors and hybrid zinc ion capacitors (ZIC) using porous carbon materials offers a promising alternative method for clean energy solutions. The unique combination of hierarchical porous structure and nitrogen doping in these materials has demonstrated significant capacity for energy storage. Nevertheless, the full potential of these materials, particularly the relationship between pore structure configuration and performance, remains underexplored. Herein, a confined pyrolysis strategy based on the polymerization characteristics of polydopamine (PDA) was developed to construction of hollow carbon spheres with microporous/mesoporous dual shell structure. The depth of micropores and cavity can be controlled by adjusting the duration of heat treatment and hydrothermal treatment, in accordance with the decomposition and polymerization characteristics of PDA. Due to the elasticity of this structure, the relationship between the micro/mesoporous depth of the prepared carbon spheres and the energy storage performance in supercapacitors and ZIC is established. Through optimizing the ion transport capacity of carbon spheres and considering the influence of its internal cavity structure on energy storage, the resulting carbon spheres exhibit high specific capacitance of 389 F g in supercapacitor and specific capacitance of 260 F g and excellent stability with 99.3 % retention after 30000 chare/discharge cycles in ZIC.
使用多孔碳材料在超级电容器和混合锌离子电容器(ZIC)中进行能量存储,为清洁能源解决方案提供了一种有前景的替代方法。这些材料中分级多孔结构和氮掺杂的独特组合已显示出显著的能量存储能力。然而,这些材料的全部潜力,特别是孔结构构型与性能之间的关系,仍未得到充分探索。在此,基于聚多巴胺(PDA)的聚合特性开发了一种受限热解策略,以构建具有微孔/介孔双壳结构的空心碳球。根据PDA的分解和聚合特性,通过调节热处理和水热处理的持续时间,可以控制微孔和空腔的深度。由于这种结构的弹性,建立了所制备碳球的微/介孔深度与超级电容器和ZIC中能量存储性能之间的关系。通过优化碳球的离子传输能力并考虑其内部空腔结构对能量存储的影响,所得碳球在超级电容器中表现出389 F g的高比电容,在ZIC中表现出260 F g的比电容以及优异的稳定性,在30000次充放电循环后保持率为99.3%。