Suppr超能文献

一种受限空间热解策略,用于控制具有高超级电容器性能的中空介孔碳球的结构。

A confined space pyrolysis strategy for controlling the structure of hollow mesoporous carbon spheres with high supercapacitor performance.

机构信息

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China.

出版信息

Nanoscale. 2019 Mar 7;11(10):4453-4462. doi: 10.1039/c8nr08784a.

Abstract

Hollow mesoporous carbon spheres (HMCSs) have been widely used in energy storage due to their high chemical stability, high surface area, thermal insulation, low effective density and high compressive strength. The electrochemical properties of HMCSs are related to their inner structure. In this work, we demonstrate a facile and controllable synthesis of HMCSs with a tunable inner structure by a confined space pyrolysis strategy. In this process, a phenolic resin oligomer solid sphere is coated with a layer of compact silica. The solid resin sphere can be transformed into a HMCS with a hollow or yolk-shell structure by direct annealing treatment in the silica shell. The compact silica shell can provide a confined space for the pyrolysis of the solid phenolic resin, producing carbon spheres with a hollow cavity, abundant mesopores and a high specific surface area without the use of a template agent. Moreover, the amount of silica precursor and the polymerization time of the resin sphere have great influence on the inner structure of the HMCSs. As an electrode material for supercapacitors, HMCSs display excellent performance with a specific capacitance of 352 F g-1 at a current density of 0.5 A g-1, which is promising for high performance energy storage.

摘要

中空介孔碳球(HMCSs)由于其化学稳定性高、比表面积大、隔热、有效密度低、抗压强度高等特点,在储能领域得到了广泛的应用。HMCSs 的电化学性能与其内部结构有关。在这项工作中,我们通过限制空间热解策略,展示了一种简便且可控制备具有可调内部结构的 HMCSs 的方法。在这个过程中,酚醛树脂低聚物固体球被一层致密的二氧化硅包裹。通过直接在二氧化硅壳中进行退火处理,固体树脂球可以转化为具有中空或蛋黄壳结构的 HMCS。致密的二氧化硅壳为固体酚醛树脂的热解提供了一个限制空间,无需使用模板剂即可生成具有中空腔、丰富介孔和高比表面积的碳球。此外,二氧化硅前体的量和树脂球的聚合时间对 HMCSs 的内部结构有很大的影响。作为超级电容器的电极材料,HMCSs 在电流密度为 0.5 A g-1 时具有 352 F g-1 的比电容,表现出优异的性能,有望用于高性能储能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验