Suppr超能文献

机器学习与基于物理的建模相结合:一种用于预测蛋白质-配体结合亲和力的质量-弹簧系统。

Machine Learning Meets Physics-based Modeling: A Mass-spring System to Predict Protein-ligand Binding Affinity.

作者信息

Filgueira de Azevedo Walter

机构信息

Department of Physics, Institute of Exact Sciences, Federal University of Alfenas, Av. Jovino Fernandes de Sales 2600, Bairro Santa Clara, Alfenas, MG., 37133-840, Brazil.

出版信息

Curr Med Chem. 2024 Aug 1. doi: 10.2174/0109298673307315240730042209.

Abstract

BACKGROUND

Computational assessment of the energetics of protein-ligand complexes is a challenge in the early stages of drug discovery. Previous comparative studies on computational methods to calculate the binding affinity showed that targeted scoring functions outperform universal models.

OBJECTIVE

The goal here is to review the application of a simple physics-based model to estimate the binding. The focus is on a mass-spring system developed to predict binding affinity against cyclin-dependent kinase.

METHOD

Publications in PubMed were searched to find mass-spring models to predict binding affinity. Crystal structures of cyclin-dependent kinases found in the protein data bank and two web servers to calculate affinity based on the atomic coordinates were employed.

RESULTS

One recent study showed how a simple physics-based scoring function (named Taba) could contribute to the analysis of protein-ligand interactions. Taba methodology outperforms robust physics-based models implemented in docking programs such as AutoDock4 and Molegro Virtual Docker. Predictive metrics of 27 scoring functions and energy terms highlight the superior performance of the Taba scoring function for cyclin- dependent kinase.

CONCLUSION

The recent progress of machine learning methods and the availability of these techniques through free libraries boosted the development of more accurate models to address protein-ligand interactions. Combining a naïve mass-spring system with machine-learning techniques generated a targeted scoring function with superior predictive performance to estimate pKi.

摘要

背景

在药物发现的早期阶段,对蛋白质 - 配体复合物的能量学进行计算评估是一项挑战。先前关于计算结合亲和力的计算方法的比较研究表明,靶向评分函数优于通用模型。

目的

本文旨在综述一种基于简单物理学的模型在估计结合方面的应用。重点是一个为预测细胞周期蛋白依赖性激酶的结合亲和力而开发的质量 - 弹簧系统。

方法

在PubMed上搜索出版物,以找到预测结合亲和力的质量 - 弹簧模型。使用蛋白质数据库中发现的细胞周期蛋白依赖性激酶的晶体结构以及两个基于原子坐标计算亲和力的网络服务器。

结果

最近的一项研究表明,一种基于简单物理学的评分函数(名为Taba)如何有助于分析蛋白质 - 配体相互作用。Taba方法优于AutoDock4和Molegro Virtual Docker等对接程序中实现的强大的基于物理学的模型。27种评分函数和能量项的预测指标突出了Taba评分函数对细胞周期蛋白依赖性激酶的卓越性能。

结论

机器学习方法的最新进展以及通过免费库获得这些技术,推动了更准确模型的开发,以解决蛋白质 - 配体相互作用问题。将一个简单的质量 - 弹簧系统与机器学习技术相结合,产生了一个具有卓越预测性能的靶向评分函数,用于估计pKi。

相似文献

2
Taba: A Tool to Analyze the Binding Affinity.塔巴:一种分析结合亲和力的工具。
J Comput Chem. 2020 Jan 5;41(1):69-73. doi: 10.1002/jcc.26048. Epub 2019 Aug 13.
7
Electrostatic Potential Energy in Protein-Drug Complexes.蛋白质-药物复合物中的静电势能。
Curr Med Chem. 2021;28(24):4954-4971. doi: 10.2174/0929867328666210201150842.
8
Machine Learning to Predict Binding Affinity.用于预测结合亲和力的机器学习
Methods Mol Biol. 2019;2053:251-273. doi: 10.1007/978-1-4939-9752-7_16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验