Laboratory of Computational Systems Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga Avenue, 6681 Partenon, 90619-900, Porto Alegre/RS, Brazil.
Specialization Program in Bioinformatics, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga Avenue, 6681 Partenon, 90619-900, Porto Alegre/RS, Brazil.
J Comput Chem. 2020 Jan 5;41(1):69-73. doi: 10.1002/jcc.26048. Epub 2019 Aug 13.
Evaluation of ligand-binding affinity using the atomic coordinates of a protein-ligand complex is a challenge from the computational point of view. The availability of crystallographic structures of complexes with binding affinity data opens the possibility to create machine-learning models targeted to a specific protein system. Here, we describe a new methodology that combines a mass-spring system approach with supervised machine-learning techniques to predict the binding affinity of protein-ligand complexes. The combination of these techniques allows exploring the scoring function space, generating a model targeted to a protein system of interest. The new model shows superior predictive performance when compared with classical scoring functions implemented in the programs Molegro Virtual Docker, AutoDock4, and AutoDock Vina. We implemented this methodology in a new program named Taba. Taba is implemented in Python and available to download under the GNU license at https://github.com/azevedolab/taba. © 2019 Wiley Periodicals, Inc.
使用蛋白质-配体复合物的原子坐标来评估配体结合亲和力是计算上的一个挑战。具有结合亲和力数据的晶体结构复合物的可用性为创建针对特定蛋白质系统的机器学习模型开辟了可能性。在这里,我们描述了一种新的方法,该方法将质量弹簧系统方法与监督机器学习技术相结合,以预测蛋白质-配体复合物的结合亲和力。这些技术的结合允许探索评分函数空间,生成针对感兴趣的蛋白质系统的模型。与 Molegro Virtual Docker、AutoDock4 和 AutoDock Vina 程序中实现的经典评分函数相比,新模型显示出优越的预测性能。我们在一个名为 Taba 的新程序中实现了这种方法。Taba 是用 Python 实现的,可以在 https://github.com/azevedolab/taba 以 GNU 许可证下载。© 2019 威利期刊公司