Troß Jan, Arias-Martinez Juan E, Carter-Fenk Kevin, Cole-Filipiak Neil C, Schrader Paul, McCaslin Laura M, Head-Gordon Martin, Ramasesha Krupa
Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States.
Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
J Am Chem Soc. 2024 Aug 14;146(32):22711-22723. doi: 10.1021/jacs.4c07523. Epub 2024 Aug 2.
Excitation of iron pentacarbonyl [Fe(CO)], a prototypical photocatalyst, at 266 nm causes the sequential loss of two CO ligands in the gas phase, creating catalytically active, unsaturated iron carbonyls. Despite numerous studies, major aspects of its ultrafast photochemistry remain unresolved because the early excited-state dynamics have so far eluded spectroscopic observation. This has led to the long-held assumption that ultrafast dissociation of gas-phase Fe(CO) proceeds exclusively on the singlet manifold. Herein, we present a combined experimental-theoretical study employing ultrafast extreme ultraviolet transient absorption spectroscopy near the Fe M-edge, which features spectral evolution on 100 fs and 3 ps time scales, alongside high-level electronic structure theory, which enables characterization of the molecular geometries and electronic states involved in the ultrafast photodissociation of Fe(CO). We assign the 100 fs evolution to spectroscopic signatures associated with intertwined structural and electronic dynamics on the singlet metal-centered states during the first CO loss and the 3 ps evolution to the competing dissociation of Fe(CO) along the lowest singlet and triplet surfaces to form Fe(CO). Calculations of transient spectra in both singlet and triplet states as well as spin-orbit coupling constants along key structural pathways provide evidence for intersystem crossing to the triplet ground state of Fe(CO). Thus, our work presents the first spectroscopic detection of transient excited states during ultrafast photodissociation of gas-phase Fe(CO) and challenges the long-standing assumption that triplet states do not play a role in the ultrafast dynamics.
五羰基铁[Fe(CO)]作为一种典型的光催化剂,在266 nm波长处激发会导致其在气相中依次失去两个CO配体,从而产生具有催化活性的不饱和羰基铁。尽管已有大量研究,但由于早期激发态动力学至今仍无法通过光谱观测来确定,其超快光化学的主要方面仍未得到解决。这导致了长期以来的一种假设,即气相Fe(CO)的超快解离仅在单重态发生。在此,我们开展了一项结合实验与理论的研究,采用了Fe M边附近的超快极紫外瞬态吸收光谱,该光谱在100 fs和3 ps的时间尺度上呈现光谱演化,同时结合了高水平电子结构理论,这使得我们能够对Fe(CO)超快光解离过程中涉及的分子几何结构和电子态进行表征。我们将100 fs的演化归因于在第一次CO损失过程中,与单重态金属中心态上相互交织的结构和电子动力学相关的光谱特征,而将3 ps的演化归因于Fe(CO)沿着最低单重态和三重态表面竞争解离形成Fe(CO)。对单重态和三重态的瞬态光谱以及沿关键结构路径的自旋 - 轨道耦合常数的计算,为体系间窜越到Fe(CO)的三重态基态提供了证据。因此,我们的工作首次对气相Fe(CO)超快光解离过程中的瞬态激发态进行了光谱检测,并挑战了长期以来认为三重态在超快动力学中不起作用的假设。