Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.
Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden.
J Chem Phys. 2017 Jun 7;146(21):211103. doi: 10.1063/1.4984774.
We prove the hitherto hypothesized sequential dissociation of Fe(CO) in the gas phase upon photoexcitation at 266 nm via a singlet pathway with time-resolved valence and core-level photoelectron spectroscopy with an x-ray free-electron laser. Valence photoelectron spectra are used to identify free CO molecules and to determine the time constants of stepwise dissociation to Fe(CO) within the temporal resolution of the experiment and further to Fe(CO) within 3 ps. Fe 3p core-level photoelectron spectra directly reflect the singlet spin state of the Fe center in Fe(CO), Fe(CO), and Fe(CO) showing that the dissociation exclusively occurs along a singlet pathway without triplet-state contribution. Our results are important for assessing intra- and intermolecular relaxation processes in the photodissociation dynamics of the prototypical Fe(CO) complex in the gas phase and in solution, and they establish time-resolved core-level photoelectron spectroscopy as a powerful tool for determining the multiplicity of transition metals in photochemical reactions of coordination complexes.
我们通过使用自由电子激光的时间分辨价和芯能级光电子能谱证明了此前假设的在 266nm 光激发下气相中 Fe(CO)的顺序离解,其通过单重态途径进行。价电子光电子能谱用于识别游离的 CO 分子,并确定逐步离解为 Fe(CO)的时间常数,实验的时间分辨率为 Fe(CO)在 3ps 内。Fe 3p 芯能级光电子能谱直接反映了 Fe(CO)、Fe(CO)和 Fe(CO)中 Fe 中心的单重态自旋态,表明解离仅沿单重态途径进行,没有三重态贡献。我们的结果对于评估气相和溶液中典型 Fe(CO)配合物光解动力学中的分子内和分子间弛豫过程非常重要,并且它们确立了时间分辨芯能级光电子能谱作为确定配位络合物光化学反应中过渡金属多重性的有力工具。