Schori Aviad, Biasin Elisa, Banerjee Ambar, Boutet Sébastien, Bucksbaum Philip H, Carbajo Sergio, Gaffney Kelly J, Glownia James M, Hartsock Robert, Ledbetter Kathryn, Kaldun Andreas, Koglin Jason E, Kunnus Kristjan, Lane Thomas J, Liang Mengning, Minitti Michael P, O'Neal Jordan T, Parrish Robert M, Poitevin Frédéric, Ruddock Jennifer M, Nelson Silke, Stankus Brian, Weber Peter M, Wolf Thomas J A, Odelius Michael, Natan Adi
Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
Nat Commun. 2025 May 22;16(1):4767. doi: 10.1038/s41467-025-60009-8.
Mechanistic insights into photodissociation dynamics of transition metal carbonyls, like Fe(CO), are fundamental for understanding active catalytic intermediates. Although extensively studied, the structural dynamics of these systems remain elusive. Using ultrafast X-ray scattering, we uncover the photochemistry of Fe(CO) in real space and time, observing synchronous oscillations in atomic pair distances, followed by a prompt rotating CO release preferentially in the axial direction. This behavior aligns with simulations, reflecting the interplay between the axial Fe-C distances' potential energy landscape and non-adiabatic transitions between metal-to-ligand charge-transfer states. Additionally, we characterize a secondary delayed CO release associated with a reduction of Fe-C steady state distances and structural dynamics of the formed Fe(CO). Our results quantify energy redistribution across vibration, rotation, and translation degrees of freedom, offering a microscopic view of complex structural dynamics, enhancing our grasp on Fe(CO) photodissociation, and advancing our understanding of transition metal catalytic systems.
对诸如Fe(CO)₅等过渡金属羰基化合物光解离动力学的机理洞察,对于理解活性催化中间体至关重要。尽管已进行了广泛研究,但这些体系的结构动力学仍不明确。利用超快X射线散射,我们在真实空间和时间中揭示了Fe(CO)₅的光化学过程,观察到原子对距离的同步振荡,随后迅速优先沿轴向释放旋转的CO。这种行为与模拟结果相符,反映了轴向Fe-C距离的势能面与金属到配体电荷转移态之间非绝热跃迁的相互作用。此外,我们还表征了与Fe-C稳态距离减小以及形成的Fe(CO)₄结构动力学相关的二次延迟CO释放。我们的结果量化了能量在振动、转动和平动自由度之间的重新分布,提供了复杂结构动力学的微观视角,增强了我们对Fe(CO)₅光解离的理解,并推进了我们对过渡金属催化体系的认识。