Whang Grace, Ketter Lukas, Zhao Tong, Nazmutdinova Elina, Kraft Marvin A, Zeier Wolfgang G
Institute of Inorganic and Analytical Chemistry, University of Münster, Münster 48149, Germany.
International Graduate School of Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Münster 48149, Germany.
ACS Appl Mater Interfaces. 2024 Aug 14;16(32):42189-42197. doi: 10.1021/acsami.4c07252. Epub 2024 Aug 2.
Pure sulfur (S and LiS) all solid-state batteries inherently suffer from low electronic conductivities, requiring the use of carbon additives, resulting in decreased active material loading at the expense of increased loading of the passive components. In this work, a transition metal sulfide in combination with lithium disulfide is employed as a dual cation-anion redox conversion composite cathode system. The transition metal sulfide undergoes cation redox, enhancing the electronic conductivity, whereas the lithium disulfide undergoes anion redox, enabling high-voltage redox conducive to achieving high energy densities. Carbon-free cathode composites with active material loadings above 6.0 mg cm attaining areal capacities of ∼4 mAh cm are demonstrated with the possibility to further increase the active mass loading above 10 mg cm achieving cathode areal capacities above 6 mAh cm, albeit with less cycle stability. In addition, the effective partial transport and thermal properties of the composites are investigated to better understand FeS:LiS cathode properties at the composite level. The work introduced here provides an alternative route and blueprint toward designing new dual conversion cathode systems, which can operate without carbon additives enabling higher active material loadings and areal capacities.
纯硫(S和LiS)全固态电池本质上存在电子电导率低的问题,需要使用碳添加剂,这导致活性材料负载量降低,而被动组件的负载量增加。在这项工作中,过渡金属硫化物与二硫化锂结合用作双阳离子-阴离子氧化还原转换复合阴极系统。过渡金属硫化物发生阳离子氧化还原,提高电子电导率,而二硫化锂发生阴离子氧化还原,实现有利于获得高能量密度的高压氧化还原。展示了活性材料负载量高于6.0 mg/cm²的无碳阴极复合材料,其面积容量达到约4 mAh/cm²,并且有可能进一步将活性质量负载量提高到10 mg/cm²以上,从而实现阴极面积容量高于6 mAh/cm²,尽管循环稳定性较差。此外,研究了复合材料的有效部分传输和热性能,以便在复合材料层面更好地理解FeS:LiS阴极性能。这里介绍的工作为设计新的双转换阴极系统提供了一条替代途径和蓝图,该系统无需碳添加剂即可运行,能够实现更高的活性材料负载量和面积容量。