Nie Nicole X, Dauphas Nicolas, Zhang Zhe J, Hopp Timo, Sarantos Menelaos
Origins Laboratory and Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA.
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Sci Adv. 2024 Aug 2;10(31):eadm7074. doi: 10.1126/sciadv.adm7074.
The Moon has a tenuous atmosphere produced by space weathering. The short-lived nature of the atoms surrounding the Moon necessitates continuous replenishment from lunar regolith through mechanisms such as micrometeorite impacts, ion sputtering, and photon-stimulated desorption. Despite advances, previous remote sensing and space mission data have not conclusively disentangled the contributions of these processes. Using high-precision potassium (K) and rubidium (Rb) isotopic analyses of lunar soils from the Apollo missions, our study sheds light on the lunar surface-atmosphere evolution over billions of years. The observed correlation between K and Rb isotopic ratios (δ Rb = 0.17 δ K) indicates that, over long timescales, micrometeorite impact vaporization is the primary source of atoms in the lunar atmosphere.
月球拥有由太空风化产生的稀薄大气层。月球周围原子的短暂性使得需要通过微陨石撞击、离子溅射和光子激发解吸等机制从月壤中持续补充。尽管取得了进展,但之前的遥感和太空任务数据尚未最终厘清这些过程的贡献。通过对阿波罗任务采集的月球土壤进行高精度钾(K)和铷(Rb)同位素分析,我们的研究揭示了数十亿年来月球表面 - 大气的演化。观测到的钾和铷同位素比率之间的相关性(δRb = 0.17δK)表明,在长时间尺度上,微陨石撞击汽化是月球大气中原子的主要来源。