Wang Zhengya, Yin Ruoting, Tang Zixi, Du Hongjian, Liang Yifan, Wang Xiaoqing, Deng Qing-Song, Tan Yuan-Zhi, Zhang Yao, Ma Chuanxu, Tan Shijing, Wang Bing
<a href="https://ror.org/01jeedh73">Hefei National Research Center for Physical Sciences</a> at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, and New Cornerstone Science Laboratory, <a href="https://ror.org/04c4dkn09">University of Science and Technology of China</a>, Hefei, Anhui 230026, China.
Hefei National Laboratory, <a href="https://ror.org/04c4dkn09">University of Science and Technology of China</a>, Hefei 230088, China.
Phys Rev Lett. 2024 Jul 19;133(3):036401. doi: 10.1103/PhysRevLett.133.036401.
It is of fundamental importance to characterize the intrinsic properties, like the topological end states, in the on-surface synthesized graphene nanoribbons (GNRs), but the strong electronic interaction with the metal substrate usually smears out their characteristic features. Here, we report our approach to investigate the vibronic excitations of the topological end states in self-decoupled second-layer GNRs, which are grown using an on-surface squeezing-induced spillover strategy. The vibronic progressions show highly spatially localized distributions at the second-layer GNR ends, which can be ascribed to the decoupling-extended lifetime of charging through resonant electron tunneling at the topological end states. In combination with theoretical calculations, we assign the vibronic progressions to specific vibrational modes that mediate the vibronic excitations. The spatial distribution of each resolved excitation shows evident characteristics beyond the conventional Franck-Condon picture. Our work by direct growth of second-layer GNRs provides an effective way to explore the interplay between the intrinsic electronic, vibrational, and topological properties.
表征表面合成的石墨烯纳米带(GNRs)的内在性质(如拓扑末端态)至关重要,但与金属衬底的强电子相互作用通常会模糊其特征。在此,我们报告了一种研究自解耦第二层GNRs中拓扑末端态的振动电子激发的方法,这些GNRs是使用表面挤压诱导溢出策略生长的。振动电子跃迁在第二层GNR末端呈现高度空间局域化分布,这可归因于通过拓扑末端态的共振电子隧穿实现的解耦延长充电寿命。结合理论计算,我们将振动电子跃迁归因于介导振动电子激发的特定振动模式。每个分辨激发的空间分布显示出超越传统弗兰克-康登图像的明显特征。我们通过直接生长第二层GNRs的工作为探索内在电子、振动和拓扑性质之间的相互作用提供了一种有效方法。