Suppr超能文献

基于 SEER 数据库的肾细胞癌患者贝叶斯竞争风险分析。

A Bayesian competing risk analysis of renal cancer patients based on SEER database.

机构信息

Labour Market Research Facility, School of Management and Labour Studies, Tata Institute of Social Sciences, Mumbai, India.

IKS@IITBHU: Centre for Indian Knowledge Systems, Indian Institute of Technology (BHU), Varanasi, India.

出版信息

Cancer Epidemiol. 2024 Oct;92:102624. doi: 10.1016/j.canep.2024.102624. Epub 2024 Aug 1.

Abstract

BACKGROUND

Renal cell carcinoma (RCC) remains a global health concern due to its poor survival rate. This study aimed to investigate the influence of medical determinants and socioeconomic status on survival outcomes of RCC patients. We analyzed the survival data of 41,563 RCC patients recorded under the Surveillance, Epidemiology, and End Results (SEER) program from 2012 to 2020.

METHODS

We employed a competing risk model, assuming lifetime of RCC patients under various risks follows Chen distribution. This model accounts for uncertainty related to survival time as well as causes of death, including missing cause of death. For model analysis, we utilized Bayesian inference and obtained the estimate of various key parameters such as cumulative incidence function (CIF) and cause-specific hazard. Additionally, we performed Bayesian hypothesis testing to assess the impact of multiple factors on the survival time of RCC patients.

RESULTS

Our findings revealed that the survival time of RCC patients is significantly influenced by gender, income, marital status, chemotherapy, tumor size, and laterality. However, we observed no significant effect of race and origin on patient's survival time. The CIF plots indicated a number of important distinctions in incidence of causes of death corresponding to factors income, marital status, race, chemotherapy, and tumor size.

CONCLUSIONS

The study highlights the impact of various medical and socioeconomic factors on survival time of RCC patients. Moreover, it also demonstrates the utility of competing risk model for survival analysis of RCC patients under Bayesian paradigm. This model provides a robust and flexible framework to deal with missing data, which can be particularly useful in real-life situations where patients information might be incomplete.

摘要

背景

由于肾癌(RCC)的生存率较差,因此仍然是一个全球健康问题。本研究旨在探讨医学决定因素和社会经济地位对 RCC 患者生存结果的影响。我们分析了 2012 年至 2020 年间监测、流行病学和最终结果(SEER)计划记录的 41,563 例 RCC 患者的生存数据。

方法

我们采用竞争风险模型,假设 RCC 患者在各种风险下的寿命遵循 Chen 分布。该模型考虑了与生存时间以及死亡原因相关的不确定性,包括死亡原因缺失。对于模型分析,我们利用贝叶斯推断获得了各种关键参数的估计,例如累积发生率函数(CIF)和特定原因的危险。此外,我们进行了贝叶斯假设检验,以评估多个因素对 RCC 患者生存时间的影响。

结果

我们的研究结果表明,RCC 患者的生存时间受性别、收入、婚姻状况、化疗、肿瘤大小和肿瘤侧别的显著影响。然而,我们没有观察到种族和来源对患者生存时间的显著影响。CIF 图表明,与收入、婚姻状况、种族、化疗和肿瘤大小等因素相对应的死亡原因发生率存在一些重要差异。

结论

本研究强调了各种医学和社会经济因素对 RCC 患者生存时间的影响。此外,它还展示了竞争风险模型在贝叶斯范式下对 RCC 患者生存分析的实用性。该模型为处理缺失数据提供了一个强大而灵活的框架,这在患者信息可能不完整的实际情况下可能特别有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验