Suppr超能文献

吲哚胺 2,3-双加氧酶抑制剂的 cheminformatics 分析:一种基于描述符和指纹的机器学习方法,用于揭示选择性度量。

Cheminformatics analysis of indoleamine and tryptophan 2,3-dioxygenase inhibitors: A descriptor and fingerprint based machine learning approach to disclose selectivity measures.

机构信息

Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.

Razi Drug Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Comput Biol Med. 2024 Sep;180:108954. doi: 10.1016/j.compbiomed.2024.108954. Epub 2024 Aug 1.

Abstract

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are attractive drug targets for cancer immunotherapy. After disappointing results of the epacadostat as a selective IDO inhibitor in phase III clinical trials, there is much interest in the development of the TDO selective inhibitors. In the current study, several data analysis methods and machine learning approaches including logistic regression, Random Forest, XGBoost and Support Vector Machines were used to model a data set of compounds retrieved from ChEMBL. Models based on the Morgan fingerprints revealed notable fragments for the selective inhibition of the IDO, TDO or both. Multiple fragment docking was performed to find the best set of bound fragments and their orientation in the space for efficient linking. Linking the fragments and optimization of the final molecules were accomplished by means of an artificial intelligence generative framework. Finally, selectivity of the optimized molecules was assessed and the top 4 lead molecules were filtered through PAINS, Brenk and NIH filters. Results indicated that phenyloxalamide, fluoroquinoline, and 3-bromo-4-fluroaniline confer selectivity towards the IDO inhibition. Correspondingly, 1-benzyl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione was found to be an integral fragment for the selective inhibition of the TDO by constituting a coordination bond with the Fe atom of heme. In addition, furo[2,3-c]pyridine-2,3-diamine was found as a common fragment for inhibition of the both targets and can be used in the design of the dual target inhibitors of the IDO and TDO. The new fragments introduced here can be a useful building blocks for incorporation into the selective TDO or dual IDO/TDO inhibitors.

摘要

色氨酸 2,3-双加氧酶(TDO)和吲哚胺 2,3-双加氧酶(IDO)是癌症免疫治疗的有吸引力的药物靶点。在 epacadostat 作为选择性 IDO 抑制剂的 III 期临床试验结果令人失望后,人们对开发 TDO 选择性抑制剂产生了浓厚的兴趣。在当前的研究中,使用了几种数据分析方法和机器学习方法,包括逻辑回归、随机森林、XGBoost 和支持向量机,对从 ChEMBL 中检索到的化合物数据集进行建模。基于 Morgan 指纹的模型揭示了用于选择性抑制 IDO、TDO 或两者的显著片段。进行了多个片段对接,以找到最佳的结合片段集及其在空间中的取向,以实现有效的连接。通过人工智能生成框架完成片段的连接和最终分子的优化。最后,评估了优化分子的选择性,并通过 PAINS、Brenk 和 NIH 过滤器筛选出前 4 个先导分子。结果表明,苯氧乙酰胺、氟喹诺酮和 3-溴-4-氟苯胺赋予 IDO 抑制作用的选择性。相应地,1-苄基-1H-萘[2,3-d][1,2,3]三唑-4,9-二酮被发现是选择性抑制 TDO 的组成片段,通过与血红素的 Fe 原子形成配位键。此外,呋喃[2,3-c]吡啶-2,3-二胺被发现是抑制两个靶点的共同片段,可用于设计 IDO 和 TDO 的双重靶点抑制剂。这里引入的新片段可以作为有用的构建块,用于选择性 TDO 或双重 IDO/TDO 抑制剂的构建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验