Suppr超能文献

肠道微生物群与骨碎补同步失调特征及其防治肥胖的整合药理学研究。

The unfolded features on the synchronized fashion of gut microbiota and Drynaria rhizome against obesity via integrated pharmacology.

机构信息

Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea.

Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea.

出版信息

Food Chem. 2024 Dec 1;460(Pt 2):140616. doi: 10.1016/j.foodchem.2024.140616. Epub 2024 Jul 26.

Abstract

Drynaria rhizome (DR) is used as a natural remedy to ameliorate obesity (OB) in East Asia; in parallel, the gut microbiota (GM) might exert a positive impact on OB through their metabolites. This study elucidates the orchestrated effects of DR and GM on OB. DR-GM, - a key signaling pathway-target-metabolite (DGSTM) networks were used to unveil the relationship between DR and GM, and Molecular Docking Test (MDT) and Density Functional Theory (DFT) were adopted to underpin the uppermost molecules. The NR1H3 (target) - 3-Epicycloeucalenol (ligand), and PPARG (target) - Clionasterol (ligand) conjugates from DR, FABP3 (target) - Ursodeoxycholic acid, FABP4 (target) - Lithocholic acid (ligand) or Deoxycholic acid (ligand), PPARA (target) - Equol (ligand), and PPARD (target) - 2,3-Bis(3,4-dihydroxybenzyl)butyrolactone (ligand) conjugates from GM formed the most stable conformers via MDT and DFT. Overall, these findings suggest that DR-GM might be a promising ameliorator on PPAR signaling pathway against OB.

摘要

龙骨(DR)作为一种天然药物,在东亚被用于改善肥胖症(OB);同时,肠道微生物群(GM)可能通过其代谢产物对 OB 产生积极影响。本研究阐明了 DR 和 GM 对 OB 的协同作用。DR-GM——一个关键的信号通路-靶向代谢物(DGSTM)网络,用于揭示 DR 和 GM 之间的关系,采用分子对接试验(MDT)和密度泛函理论(DFT)来支撑最高分子。来自 DR 的 NR1H3(靶标)-3-表环羊毛甾醇(配体)和 PPARG(靶标)-菜油甾醇(配体),以及 FABP3(靶标)-熊去氧胆酸、FABP4(靶标)-石胆酸(配体)或脱氧胆酸(配体)、PPARA(靶标)-雌马酚(配体)和 PPARD(靶标)-2,3-双(3,4-二羟基苄基)丁内酯(配体)的结合物,通过 MDT 和 DFT 形成了最稳定的构象。总的来说,这些发现表明,DR-GM 可能是一种有前途的改善 PPAR 信号通路对抗 OB 的调节剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验