Department of Biomedical Imaging and Image-guided treatment, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Breast Imaging Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY 10065, USA.
University Hospitals of Leicester, NHS Trust, LE1 5WW Leicester, Leicestershire, United Kingdom.
Eur J Radiol. 2024 Sep;178:111649. doi: 10.1016/j.ejrad.2024.111649. Epub 2024 Jul 26.
To create a simple model using standard BI-RADS® descriptors from pre-treatment B-mode ultrasound (US) combined with clinicopathological tumor features, and to assess the potential of the model to predict the presence of residual tumor after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients.
245 female BC patients receiving NAC between January 2017 and December 2019 were included in this retrospective study. Two breast imaging fellows independently evaluated representative B-mode tumor images from baseline US. Additional clinicopathological tumor features were retrieved. The dataset was split into 170 training and 83 validation cases. Logistic regression was used in the training set to identify independent predictors of residual disease post NAC and to create a model, whose performance was evaluated by ROC curve analysis in the validation set. The reference standard was postoperative histology to determine the absence (pathological complete response, pCR) or presence (non-pCR) of residual invasive tumor in the breast or axillary lymph nodes.
100 patients (40.8%) achieved pCR. Logistic regression demonstrated that tumor size, microlobulated margin, spiculated margin, the presence of calcifications, the presence of edema, HER2-positive molecular subtype, and triple-negative molecular subtype were independent predictors of residual disease. A model using these parameters demonstrated an area under the ROC curve of 0.873 in the training and 0.720 in the validation set for the prediction of residual tumor post NAC.
A simple model combining standard BI-RADS® descriptors from pre-treatment B-mode breast US with clinicopathological tumor features predicts the presence of residual disease after NAC.
利用术前 B 型超声(US)的标准 BI-RADS®描述符并结合临床病理肿瘤特征,创建一个简单的模型,并评估该模型预测乳腺癌(BC)患者新辅助化疗(NAC)后残留肿瘤存在的潜力。
本回顾性研究纳入了 2017 年 1 月至 2019 年 12 月期间接受 NAC 的 245 名女性 BC 患者。两名乳腺影像学研究员独立评估基线 US 的代表性 B 型肿瘤图像。还检索了其他临床病理肿瘤特征。数据集分为 170 个训练和 83 个验证病例。在训练集中使用逻辑回归识别 NAC 后残留疾病的独立预测因子,并创建模型,然后在验证集中通过 ROC 曲线分析评估其性能。参考标准是术后组织学,以确定乳房或腋窝淋巴结中是否存在残留浸润性肿瘤(病理完全缓解,pCR)或存在(非 pCR)。
100 名患者(40.8%)达到了 pCR。逻辑回归表明,肿瘤大小、微叶状边缘、锯齿状边缘、钙化的存在、水肿的存在、HER2 阳性分子亚型和三阴性分子亚型是残留疾病的独立预测因子。在训练集和验证集中,使用这些参数的模型对 NAC 后残留肿瘤的预测,ROC 曲线下面积分别为 0.873 和 0.720。
一个简单的模型,将术前 B 型乳腺 US 的标准 BI-RADS®描述符与临床病理肿瘤特征相结合,可预测 NAC 后残留疾病的存在。