Suppr超能文献

在曲妥珠单抗为基础的新辅助化疗期间,多参数 MRI 的纵向变化可以预测 HER2 阳性乳腺癌患者的早期治疗反应。

The longitudinal changes in multiparametric MRI during neoadjuvant chemotherapy can predict treatment response early in patients with HER2-positive breast cancer.

机构信息

Department of Radiology, Guangzhou First People's Hospital, South China University of Technology, No.1 Panfu Road, Guangzhou 510180, China.

Department of Radiology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 150001, China.

出版信息

Eur J Radiol. 2024 Sep;178:111656. doi: 10.1016/j.ejrad.2024.111656. Epub 2024 Jul 31.

Abstract

PURPOSE

To investigate whether longitudinal changes in multiparametric MRI can predict early response to neoadjuvant chemotherapy (NAC) for HER2-positive breast cancer (BC) and to further establish quantitative models based on these features.

METHODS

A total of 164 HER2-positive BC patients from three centers were included. MRI was performed at baseline and after two cycles of NAC (early post-NAC). Clinicopathological characteristics were enrolled. MRI features were evaluated at baseline and early post-NAC, as well as longitudinal changes in multiparametric MRI, including changes in the largest diameter (LD) of the tumor (ΔLD), apparent diffusion coefficient (ADC) values (ΔADC), and time-signal intensity curve (TIC) (ΔTIC). The patients were divided into a training set (n = 95), an internal validation set (n = 31), and an independent external validation set (n = 38). Univariate and multivariate logistic regression analyses were used to identify the independent indicators of pCR, which were then used to establish the clinicopathologic model and combined model. The AUC was used to evaluate the predictive power of the different models and calibration curves were used to evaluate the consistency of the prediction of pCR in different models. Additionally, decision curve analysis (DCA) was employed to determine the clinical usefulness of the different models.

RESULTS

Two models were enrolled in this study, including the clinicopathologic model and the combined model. The LD at early post-NAC (OR=0.913, 95 % CI=0.953-0.994 p = 0.026), ΔADC (OR=1.005, 95 % CI=1.005-1.008, p = 0.007), and ΔTIC (OR=3.974, 95 % CI=1.276-12.358, p = 0.017) were identified as the best predictors of NAC response. The combined model constructed by the combination of LD at early post-NAC, ΔADC, and ΔTIC showed good predictive performance in the training set (AUC=0.87), internal validation set (AUC=0.78), and external validation set (AUC=0.79), which performed better than the clinicopathologic model in all sets.

CONCLUSIONS

The changes in multiparametric MRI can predict early treatment response for HER2-positive BC and may be helpful for individualized treatment planning.

摘要

目的

探讨多参数 MRI 的纵向变化能否预测人表皮生长因子受体 2(HER2)阳性乳腺癌(BC)新辅助化疗(NAC)的早期应答,并进一步基于这些特征建立定量模型。

方法

本研究纳入了来自 3 个中心的 164 例 HER2 阳性 BC 患者。在基线和 NAC 两个周期后(早期 post-NAC)进行 MRI 检查。入组了临床病理特征。在基线和早期 post-NAC 评估 MRI 特征,以及多参数 MRI 的纵向变化,包括肿瘤最大直径(LD)的变化(ΔLD)、表观扩散系数(ADC)值的变化(ΔADC)和时间信号强度曲线(TIC)的变化(ΔTIC)。患者被分为训练集(n=95)、内部验证集(n=31)和独立外部验证集(n=38)。使用单变量和多变量逻辑回归分析来确定 pCR 的独立指标,然后用于建立临床病理模型和联合模型。使用 AUC 评估不同模型的预测能力,使用校准曲线评估不同模型中 pCR 预测的一致性。此外,采用决策曲线分析(DCA)来确定不同模型的临床实用性。

结果

本研究纳入了两个模型,包括临床病理模型和联合模型。早期 post-NAC 的 LD(OR=0.913,95%CI=0.953-0.994,p=0.026)、ΔADC(OR=1.005,95%CI=1.005-1.008,p=0.007)和ΔTIC(OR=3.974,95%CI=1.276-12.358,p=0.017)被确定为 NAC 反应的最佳预测指标。由早期 post-NAC 的 LD、ΔADC 和ΔTIC 组合构建的联合模型在训练集(AUC=0.87)、内部验证集(AUC=0.78)和外部验证集(AUC=0.79)中具有良好的预测性能,在所有组中均优于临床病理模型。

结论

多参数 MRI 的变化可以预测 HER2 阳性 BC 的早期治疗反应,可能有助于个体化治疗计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验