Department of Biology, Brandeis University, Waltham, MA 02453, USA.
Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
Dev Cell. 2024 Aug 19;59(16):2222-2238.e4. doi: 10.1016/j.devcel.2024.07.006. Epub 2024 Aug 1.
Epigenetic mechanisms enable cells to develop novel adaptive phenotypes without altering their genetic blueprint. Recent studies show histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), can be redistributed to establish adaptive phenotypes. We developed a precision-engineered genetic approach to trigger heterochromatin misregulation on-demand in fission yeast. This enabled us to trace genome-scale RNA and H3K9me changes over time in long-term, continuous cultures. Adaptive H3K9me establishes over remarkably slow timescales relative to the initiating stress. We captured dynamic H3K9me redistribution events which depend on an RNA binding complex MTREC, ultimately leading to cells converging on an optimal adaptive solution. Upon stress removal, cells relax to new transcriptional and chromatin states, establishing memory that is tunable and primed for future adaptive epigenetic responses. Collectively, we identify the slow kinetics of epigenetic adaptation that allow cells to discover and heritably encode novel adaptive solutions, with implications for drug resistance and response to infection.
表观遗传机制使细胞能够在不改变其遗传蓝图的情况下发展出新颖的适应性表型。最近的研究表明,组蛋白修饰,如异染色质定义的 H3K9 甲基化 (H3K9me),可以重新分布以建立适应性表型。我们开发了一种精密工程的遗传方法,以按需触发裂变酵母中的异染色质失调。这使我们能够在长期连续培养中追踪全基因组 RNA 和 H3K9me 的随时间变化。与起始应激相比,适应性 H3K9me 的建立速度非常缓慢。我们捕获了依赖于 RNA 结合复合物 MTREC 的动态 H3K9me 再分布事件,最终导致细胞收敛到最佳适应性解决方案。去除应激后,细胞会松弛到新的转录和染色质状态,建立可调节的记忆,为未来的适应性表观遗传反应做好准备。总的来说,我们确定了表观遗传适应的缓慢动力学,使细胞能够发现和遗传新的适应性解决方案,这对药物抗性和感染反应具有重要意义。