Suppr超能文献

端到端深度学习流水线,用于对自动参数脑 PET 映射进行偏体积校正的血液输入。

An end-to-end deep learning pipeline to derive blood input with partial volume corrections for automated parametric brain PET mapping.

机构信息

Department of Computer Science and Engineering, University of Virginia, Charlottesville, VA, United States of America.

Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States of America.

出版信息

Biomed Phys Eng Express. 2024 Aug 19;10(5):055028. doi: 10.1088/2057-1976/ad6a64.

Abstract

Dynamic 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (dFDG-PET) for human brain imaging has considerable clinical potential, yet its utilization remains limited. A key challenge in the quantitative analysis of dFDG-PET is characterizing a patient-specific blood input function, traditionally reliant on invasive arterial blood sampling. This research introduces a novel approach employing non-invasive deep learning model-based computations from the internal carotid arteries (ICA) with partial volume (PV) corrections, thereby eliminating the need for invasive arterial sampling. We present an end-to-end pipeline incorporating a 3D U-Net based ICA-net for ICA segmentation, alongside a Recurrent Neural Network (RNN) based MCIF-net for the derivation of a model-corrected blood input function (MCIF) with PV corrections. The developed 3D U-Net and RNN was trained and validated using a 5-fold cross-validation approach on 50 human brain FDG PET scans. The ICA-net achieved an average Dice score of 82.18% and an Intersection over Union of 68.54% across all tested scans. Furthermore, the MCIF-net exhibited a minimal root mean squared error of 0.0052. The application of this pipeline to ground truth data for dFDG-PET brain scans resulted in the precise localization of seizure onset regions, which contributed to a successful clinical outcome, with the patient achieving a seizure-free state after treatment. These results underscore the efficacy of the ICA-net and MCIF-net deep learning pipeline in learning the ICA structure's distribution and automating MCIF computation with PV corrections. This advancement marks a significant leap in non-invasive neuroimaging.

摘要

动态 2-[18F] 氟代-2-脱氧-D-葡萄糖正电子发射断层扫描(dFDG-PET)在人脑成像方面具有相当大的临床潜力,但它的应用仍然有限。在 dFDG-PET 的定量分析中,一个关键的挑战是描述一个特定于患者的血液输入函数,传统上依赖于有创的动脉血液采样。本研究介绍了一种新方法,该方法使用来自颈内动脉(ICA)的非侵入性深度学习模型计算,具有部分容积(PV)校正,从而无需进行有创的动脉采样。我们提出了一种端到端的流水线,该流水线结合了基于 3D U-Net 的 ICA-net 进行 ICA 分割,以及基于递归神经网络(RNN)的 MCIF-net 进行模型校正的血液输入函数(MCIF)的计算,具有 PV 校正。所开发的 3D U-Net 和 RNN 使用 50 个人脑 FDG PET 扫描的 5 折交叉验证方法进行了训练和验证。ICA-net 在所有测试扫描中平均 Dice 评分为 82.18%,交集比为 68.54%。此外,MCIF-net 的均方根误差最小为 0.0052。该流水线应用于 dFDG-PET 脑扫描的真实数据,精确定位了癫痫发作起始区,这有助于取得成功的临床结果,患者在治疗后实现了无癫痫状态。这些结果强调了 ICA-net 和 MCIF-net 深度学习管道在学习 ICA 结构分布和自动进行具有 PV 校正的 MCIF 计算方面的有效性。这一进展标志着非侵入性神经影像学的重大飞跃。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验