Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA.
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany.
Nat Commun. 2024 Mar 1;15(1):1912. doi: 10.1038/s41467-024-46223-w.
Material properties of phase-separated biomolecular condensates, enriched with disordered proteins, dictate many cellular functions. Contrary to the progress made in understanding the sequence-dependent phase separation of proteins, little is known about the sequence determinants of condensate material properties. Using the hydropathy scale and Martini models, we computationally decipher these relationships for charge-rich disordered protein condensates. Our computations yield dynamical, rheological, and interfacial properties of condensates that are quantitatively comparable with experimentally characterized condensates. Interestingly, we find that the material properties of model and natural proteins respond similarly to charge segregation, despite different sequence compositions. Molecular interactions within the condensates closely resemble those within the single-chain ensembles. Consequently, the material properties strongly correlate with molecular contact dynamics and single-chain structural properties. We demonstrate the potential to harness the sequence characteristics of disordered proteins for predicting and engineering the material properties of functional condensates, with insights from the dilute phase properties.
富含无序蛋白质的相分离生物分子凝聚物的材料特性决定了许多细胞功能。与在理解蛋白质序列依赖性相分离方面取得的进展相反,对于凝聚物材料特性的序列决定因素知之甚少。我们使用亲水性尺度和 Martini 模型,从计算上揭示了富含电荷的无序蛋白质凝聚物的这些关系。我们的计算得出了凝聚物的动力学、流变学和界面特性,这些特性与实验表征的凝聚物具有定量可比性。有趣的是,我们发现尽管序列组成不同,但模型和天然蛋白质的材料特性对电荷分离的响应相似。凝聚物内的分子相互作用与单链集合内的相互作用非常相似。因此,材料特性与分子接触动力学和单链结构特性密切相关。我们展示了利用无序蛋白质的序列特征来预测和设计功能性凝聚物的材料特性的潜力,并从稀相特性中获得了一些见解。