Applied and Computational Mathematics Division, Beijing Computational Science Research Center, Beijing, China.
School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
Nat Commun. 2024 Aug 2;15(1):6557. doi: 10.1038/s41467-024-50716-z.
Gene-gene interactions are crucial to the control of sub-cellular processes but our understanding of their stochastic dynamics is hindered by the lack of simulation methods that can accurately and efficiently predict how the distributions of gene product numbers vary across parameter space. To overcome these difficulties, here we present Holimap (high-order linear-mapping approximation), an approach that approximates the protein or mRNA number distributions of a complex gene regulatory network by the distributions of a much simpler reaction system. We demonstrate Holimap's computational advantages over conventional methods by applying it to predict the stochastic time-dependent dynamics of various gene networks, including transcriptional networks ranging from simple autoregulatory loops to complex randomly connected networks, post-transcriptional networks, and post-translational networks. Holimap is ideally suited to study how the intricate network of gene-gene interactions results in precise coordination and control of gene expression.
基因-基因相互作用对于亚细胞过程的控制至关重要,但由于缺乏能够准确有效地预测基因产物数量分布如何随参数空间变化的模拟方法,我们对其随机动力学的理解受到了阻碍。为了克服这些困难,我们在这里提出了 Holimap(高阶线性映射逼近),这是一种通过更简单的反应系统的分布来近似复杂基因调控网络的蛋白质或 mRNA 数量分布的方法。我们通过将 Holimap 应用于预测各种基因网络的随机时变动力学,包括从简单的自调节回路到复杂的随机连接网络、转录后网络和翻译后网络的转录网络,展示了它相对于传统方法的计算优势。Holimap 非常适合研究基因-基因相互作用的复杂网络如何导致基因表达的精确协调和控制。