Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, 360020, India.
College of Science, Northeastern University, Boston, Massachusetts, 02115, USA.
Curr Microbiol. 2024 Aug 2;81(9):294. doi: 10.1007/s00284-024-03813-7.
More recently, the application of semiconductor nanomaterials called quantum dots (QDs), has gained considerable attention as they possess tunable optoelectronic and physicochemical properties. There are several routes of QDs synthesis some of which include lithography, molecular beam epitaxy, and chemical reduction. However, most of these methods are expensive, labour intensive, and produce toxic by-products. Hence, the biosynthesis of QDs has been extensively researched for addressing the issues. This review elaborates on the biogenic synthesis of cadmium selenide, cadmium telluride, cadmium sulfide, lead sulfide, and zinc sulfide QDs using bacteria, and fungi. Further, we attempt to identify the underlying mechanism and critical parameters that can control the synthesis of QDs. Eventually, their application in detectors, photovoltaics, biodiesel, photocatalysis, infection-control, and bioimaging are discussed. Thus, biogenic QDs have a tremendous scope in future to emerge as next generation nanotheranostics although thorough pharmacokinetic, and pharmacodynamic studies are required.
最近,一种被称为量子点(QDs)的半导体纳米材料的应用引起了相当大的关注,因为它们具有可调谐的光电和物理化学性质。有几种 QDs 的合成途径,包括光刻、分子束外延和化学还原。然而,这些方法中的大多数都很昂贵、劳动强度大,并产生有毒副产品。因此,人们广泛研究了 QDs 的生物合成,以解决这些问题。本综述详细阐述了利用细菌和真菌生物合成硒化镉、碲化镉、硫化镉、硫化铅和硫化锌 QDs 的方法。此外,我们试图确定可以控制 QDs 合成的潜在机制和关键参数。最终,讨论了它们在探测器、光伏、生物柴油、光催化、感染控制和生物成像中的应用。因此,尽管需要进行彻底的药代动力学和药效动力学研究,但生物合成的 QDs 在未来作为下一代纳米治疗方面具有巨大的潜力。