Tan Yang, Li Mingchen, Zhou Ziyi, Tan Pan, Yu Huiqun, Fan Guisheng, Hong Liang
School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Science, Shanghai Jiao Tong University, Shanghai, 200240, China.
J Cheminform. 2024 Aug 2;16(1):92. doi: 10.1186/s13321-024-00884-3.
Protein language models (PLMs) play a dominant role in protein representation learning. Most existing PLMs regard proteins as sequences of 20 natural amino acids. The problem with this representation method is that it simply divides the protein sequence into sequences of individual amino acids, ignoring the fact that certain residues often occur together. Therefore, it is inappropriate to view amino acids as isolated tokens. Instead, the PLMs should recognize the frequently occurring combinations of amino acids as a single token. In this study, we use the byte-pair-encoding algorithm and unigram to construct advanced residue vocabularies for protein sequence tokenization, and we have shown that PLMs pre-trained using these advanced vocabularies exhibit superior performance on downstream tasks when compared to those trained with simple vocabularies. Furthermore, we introduce PETA, a comprehensive benchmark for systematically evaluating PLMs. We find that vocabularies comprising 50 and 200 elements achieve optimal performance. Our code, model weights, and datasets are available at https://github.com/ginnm/ProteinPretraining . SCIENTIFIC CONTRIBUTION: This study introduces advanced protein sequence tokenization analysis, leveraging the byte-pair-encoding algorithm and unigram. By recognizing frequently occurring combinations of amino acids as single tokens, our proposed method enhances the performance of PLMs on downstream tasks. Additionally, we present PETA, a new comprehensive benchmark for the systematic evaluation of PLMs, demonstrating that vocabularies of 50 and 200 elements offer optimal performance.
蛋白质语言模型(PLMs)在蛋白质表示学习中发挥着主导作用。大多数现有的PLMs将蛋白质视为由20种天然氨基酸组成的序列。这种表示方法的问题在于,它只是将蛋白质序列简单地划分为单个氨基酸序列,而忽略了某些残基经常一起出现的事实。因此,将氨基酸视为孤立的标记是不合适的。相反,PLMs应该将频繁出现的氨基酸组合识别为单个标记。在本研究中,我们使用字节对编码算法和一元语法来构建用于蛋白质序列标记化的高级残基词汇表,并且我们已经表明,与使用简单词汇表训练的模型相比,使用这些高级词汇表预训练的PLMs在下游任务中表现出更优的性能。此外,我们引入了PETA,这是一个用于系统评估PLMs的综合基准。我们发现,包含50个和200个元素的词汇表可实现最佳性能。我们的代码、模型权重和数据集可在https://github.com/ginnm/ProteinPretraining获取。科学贡献:本研究引入了先进的蛋白质序列标记化分析,利用了字节对编码算法和一元语法。通过将频繁出现的氨基酸组合识别为单个标记,我们提出的方法提高了PLMs在下游任务中的性能。此外,我们提出了PETA,这是一个用于系统评估PLMs的新综合基准,表明50个和200个元素的词汇表具有最佳性能。