Suppr超能文献

使用三维磁共振指纹技术对焦距性皮质发育异常进行多参数表征

Multiparametric Characterization of Focal Cortical Dysplasia Using 3D MR Fingerprinting.

作者信息

Su Ting-Yu, Choi Joon Yul, Hu Siyuan, Wang Xiaofeng, Blümcke Ingmar, Chiprean Katherine, Krishnan Balu, Ding Zheng, Sakaie Ken, Murakami Hiroatsu, Alexopoulos Andreas V, Najm Imad, Jones Stephen E, Ma Dan, Wang Zhong Irene

机构信息

Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

出版信息

Ann Neurol. 2024 Nov;96(5):944-957. doi: 10.1002/ana.27049. Epub 2024 Aug 3.

Abstract

OBJECTIVE

To develop a multiparametric machine-learning (ML) framework using high-resolution 3 dimensional (3D) magnetic resonance (MR) fingerprinting (MRF) data for quantitative characterization of focal cortical dysplasia (FCD).

MATERIALS

We included 119 subjects, 33 patients with focal epilepsy and histopathologically confirmed FCD, 60 age- and gender-matched healthy controls (HCs), and 26 disease controls (DCs). Subjects underwent whole-brain 3 Tesla MRF acquisition, the reconstruction of which generated T1 and T2 relaxometry maps. A 3D region of interest was manually created for each lesion, and z-score normalization using HC data was performed. We conducted 2D classification with ensemble models using MRF T1 and T2 mean and standard deviation from gray matter and white matter for FCD versus controls. Subtype classification additionally incorporated entropy and uniformity of MRF metrics, as well as morphometric features from the morphometric analysis program (MAP). We translated 2D results to individual probabilities using the percentage of slices above an adaptive threshold. These probabilities and clinical variables were input into a support vector machine for individual-level classification. Fivefold cross-validation was performed and performance metrics were reported using receiver-operating-characteristic-curve analyses.

RESULTS

FCD versus HC classification yielded mean sensitivity, specificity, and accuracy of 0.945, 0.980, and 0.962, respectively; FCD versus DC classification achieved 0.918, 0.965, and 0.939. In comparison, visual review of the clinical magnetic resonance imaging (MRI) detected 48% (16/33) of the lesions by official radiology report. In the subgroup where both clinical MRI and MAP were negative, the MRF-ML models correctly distinguished FCD patients from HCs and DCs in 98.3% of cross-validation trials. Type II versus non-type-II classification exhibited mean sensitivity, specificity, and accuracy of 0.835, 0.823, and 0.83, respectively; type IIa versus IIb classification showed 0.85, 0.9, and 0.87. In comparison, the transmantle sign was present in 58% (7/12) of the IIb cases.

INTERPRETATION

The MRF-ML framework presented in this study demonstrated strong efficacy in noninvasively classifying FCD from normal cortex and distinguishing FCD subtypes. ANN NEUROL 2024;96:944-957.

摘要

目的

利用高分辨率三维(3D)磁共振(MR)指纹图谱(MRF)数据开发一种多参数机器学习(ML)框架,用于局灶性皮质发育不良(FCD)的定量表征。

材料

我们纳入了119名受试者,其中33例患有局灶性癫痫且经组织病理学证实为FCD的患者,60名年龄和性别匹配的健康对照(HCs),以及26名疾病对照(DCs)。受试者接受了全脑3特斯拉MRF采集,采集数据重建后生成T1和T2弛豫测量图。为每个病变手动创建一个3D感兴趣区域,并使用HC数据进行z分数标准化。我们使用MRF T1和T2的均值及标准差(来自灰质和白质),通过集成模型对FCD与对照进行二维分类。亚型分类还纳入了MRF指标的熵和均匀性,以及形态测量分析程序(MAP)的形态学特征。我们使用高于自适应阈值的切片百分比将二维结果转换为个体概率。将这些概率和临床变量输入支持向量机进行个体水平分类。进行了五折交叉验证,并使用受试者操作特征曲线分析报告性能指标。

结果

FCD与HC分类的平均敏感性、特异性和准确性分别为0.945、0.980和0.962;FCD与DC分类的相应结果为0.918、0.965和0.939。相比之下,根据官方放射学报告,临床磁共振成像(MRI)的视觉评估仅检测到48%(16/33)的病变。在临床MRI和MAP均为阴性的亚组中,MRF-ML模型在98.3%的交叉验证试验中正确区分了FCD患者与HCs和DCs。II型与非II型分类的平均敏感性、特异性和准确性分别为0.835、0.823和0.83;IIa型与IIb型分类的相应结果为0.85、0.9和0.87。相比之下,58%(7/12)的IIb型病例出现了跨皮质征。

解读

本研究中提出的MRF-ML框架在无创区分FCD与正常皮质以及鉴别FCD亚型方面显示出强大的功效。《神经病学纪事》2024年;96:944 - 957。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验