Department of Biological Sciences, The George Washington University, 2029 G Street NW, Washington, DC 20052, USA.
https://johnsonlm.com, Wilmore, KY 40390, USA.
Integr Comp Biol. 2024 Sep 27;64(3):715-728. doi: 10.1093/icb/icae129.
Extant salamanders are used as modern analogs of early digit-bearing tetrapods due to general similarities in morphology and ecology, but the study species have been primarily terrestrial and relatively smaller when the earliest digit-bearing tetrapods were aquatic and an order of magnitude larger. Thus, we created a 3D computational model of underwater walking in extant Japanese giant salamanders (Andrias japonicus) using 3D photogrammetry and open-access graphics software (Blender) to broaden the range of testable hypotheses about the incipient stages of terrestrial locomotion. Our 3D model and software protocol represent the initial stages of an open-access pipeline that could serve as a "one-stop-shop" for studying locomotor function, from creating 3D models to analyzing the mechanics of locomotor gaits. While other pipelines generally require multiple software programs to accomplish the different steps in creating and analyzing computational models of locomotion, our protocol is built entirely within Blender and fully customizable with its Python scripting so users can devote more time to creating and analyzing models instead of navigating the learning curves of several software programs. The main value of our approach is that key kinematic variables (e.g. speed, stride length, and elbow flexion) can be easily altered on the 3D model, allowing scientists to test hypotheses about locomotor function and conduct manipulative experiments (e.g. lengthening bones) that are difficult to perform in vivo. The accurate 3D meshes (and animations) generated through photogrammetry also provide exciting opportunities to expand the abundance and diversity of 3D digital animals available for researchers, educators, artists, conservation biologists, etc. to maximize societal impacts.
现存的蝾螈被用作早期有趾四足动物的现代模拟物,因为它们在形态和生态上有一般的相似性,但研究物种主要是陆生的,而且相对较小,而最早的有趾四足动物是水生的,体积要大一个数量级。因此,我们使用 3D 摄影测量和开放获取的图形软件(Blender)创建了现存的日本大鲵(Andrias japonicus)水下行走的 3D 计算模型,以拓宽关于陆地运动初始阶段的可测试假设的范围。我们的 3D 模型和软件协议代表了开放获取管道的初始阶段,该管道可以作为研究运动功能的“一站式”服务,从创建 3D 模型到分析运动步态的力学。虽然其他管道通常需要多个软件程序来完成创建和分析运动计算模型的不同步骤,但我们的协议完全在 Blender 中构建,并完全可以通过其 Python 脚本进行定制,因此用户可以将更多的时间用于创建和分析模型,而不是在多个软件程序的学习曲线上花费时间。我们的方法的主要价值在于,关键运动学变量(例如速度、步长和肘部弯曲)可以在 3D 模型上轻松更改,从而使科学家能够测试关于运动功能的假设,并进行难以在体内进行的操纵实验(例如延长骨骼)。通过摄影测量生成的精确 3D 网格(和动画)也为扩展 3D 数字动物的丰富度和多样性提供了令人兴奋的机会,供研究人员、教育工作者、艺术家、保护生物学家等使用,以最大限度地发挥社会影响。