Suppr超能文献

标准化纳米医学中的蛋白冠特征:增强重现性和数据同质性的多中心研究。

Standardizing Protein Corona Characterization in Nanomedicine: A Multicenter Study to Enhance Reproducibility and Data Homogeneity.

机构信息

Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States.

Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden.

出版信息

Nano Lett. 2024 Aug 14;24(32):9874-9881. doi: 10.1021/acs.nanolett.4c02076. Epub 2024 Aug 3.

Abstract

We recently revealed significant variability in protein corona characterization across various proteomics facilities, indicating that data sets are not comparable between independent studies. This heterogeneity mainly arises from differences in sample preparation protocols, mass spectrometry workflows, and raw data processing. To address this issue, we developed standardized protocols and unified sample preparation workflows, distributing uniform protein corona digests to several top-performing proteomics centers from our previous study. We also examined the influence of using similar mass spectrometry instruments on data homogeneity and standardized database search parameters and data processing workflows. Our findings reveal a remarkable stepwise improvement in protein corona data uniformity, increasing overlaps in protein identification from 11% to 40% across facilities using similar instruments and through a uniform database search. We identify the key parameters behind data heterogeneity and provide recommendations for designing experiments. Our findings should significantly advance the robustness of protein corona analysis for diagnostic and therapeutics applications.

摘要

我们最近发现,不同蛋白质组学研究机构在蛋白质冠特征描述方面存在显著差异,这表明独立研究之间的数据不可比。这种异质性主要源于样品制备方案、质谱工作流程和原始数据处理的差异。为了解决这个问题,我们制定了标准化的方案和统一的样品制备工作流程,将统一的蛋白质冠消化物分发给来自我们之前研究的几个表现最佳的蛋白质组学中心。我们还研究了使用类似质谱仪器对数据同质性的影响,并标准化了数据库搜索参数和数据处理工作流程。我们的研究结果表明,蛋白质冠数据的均匀性得到了显著提高,使用类似仪器的不同机构之间的蛋白质鉴定重叠率从 11%提高到 40%,并且通过统一的数据库搜索实现了这一结果。我们确定了数据异质性背后的关键参数,并为实验设计提供了建议。我们的研究结果应该会显著提高蛋白质冠分析在诊断和治疗应用中的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68fc/11328176/20fd8f3fd91b/nl4c02076_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验