Suppr超能文献

一种用于阿尔茨海默病分类的新型图神经网络方法。

A novel graph neural network method for Alzheimer's disease classification.

机构信息

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China.

College of Science, China Agricultural University, Beijing, China.

出版信息

Comput Biol Med. 2024 Sep;180:108869. doi: 10.1016/j.compbiomed.2024.108869. Epub 2024 Aug 2.

Abstract

Alzheimer's disease (AD) is a chronic neurodegenerative disease. Early diagnosis are very important to timely treatment and delay the progression of the disease. In the past decade, many computer-aided diagnostic (CAD) algorithms have been proposed for classification of AD. In this paper, we propose a novel graph neural network method, termed Brain Graph Attention Network (BGAN) for classification of AD. First, brain graph data are used to model classification of AD as a graph classification task. Second, a local attention layer is designed to capture and aggregate messages of interactions between node neighbors. And, a global attention layer is introduced to obtain the contribution of each node for graph representation. Finally, using the BGAN to implement AD classification. We train and test on two open public databases for AD classification task. Compared to classic models, the experimental results show that our model is superior to six classic models. We demonstrate that BGAN is a powerful classification model for AD. In addition, our model can provide an analysis of brain regions in order to judge which regions are related to AD disease and which regions are related to AD progression.

摘要

阿尔茨海默病(AD)是一种慢性神经退行性疾病。早期诊断对于及时治疗和延缓疾病进展非常重要。在过去的十年中,已经提出了许多计算机辅助诊断(CAD)算法来进行 AD 的分类。在本文中,我们提出了一种新的图神经网络方法,称为脑图注意网络(BGAN),用于 AD 的分类。首先,脑图数据被用于将 AD 的分类建模为图分类任务。其次,设计了一个局部注意层来捕获和聚合节点邻居之间相互作用的消息。并且,引入了一个全局注意层来获取每个节点对图表示的贡献。最后,使用 BGAN 来实现 AD 的分类。我们在两个用于 AD 分类任务的公开数据库上进行训练和测试。与经典模型相比,实验结果表明我们的模型优于六个经典模型。我们证明了 BGAN 是一种用于 AD 分类的强大模型。此外,我们的模型可以提供对大脑区域的分析,以便判断哪些区域与 AD 疾病相关,哪些区域与 AD 进展相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验