Suppr超能文献

深入探讨经验、任务领域和自信如何影响对算法的依赖程度。

A closer look at how experience, task domain, and self-confidence influence reliance towards algorithms.

机构信息

Consortium of Universities, Wright-Patterson AFB, OH, United States.

Air Force Research Laboratory, Wright-Patterson AFB, OH, United States.

出版信息

Appl Ergon. 2024 Nov;121:104363. doi: 10.1016/j.apergo.2024.104363. Epub 2024 Aug 2.

Abstract

Prior research has demonstrated experience with a forecasting algorithm decreases reliance behaviors (i.e., the action of relying on the algorithm). However, the influence of model experience on reliance intentions (i.e., an intention or willingness to rely on the algorithm) has not been explored. Additionally, other factors such as self-confidence and domain knowledge are posited to influence algorithm reliance. The objective of this research was to examine how experience with a statistical model, task domain (used car sales, college grade point average (GPA), GitHub pull requests), and self-confidence influence reliance intentions, reliance behaviors, and perceived accuracy of one's own estimates and the model's estimates. Participants (N = 347) were recruited online and completed a forecasting task. Results indicate that there was a statistically significant effect of self-confidence and task domain on reliance intentions, reliance behaviors, and perceived accuracy. However, unlike previous findings, model experience did not significantly influence reliance behavior, nor did it lead to significant changes in reliance intentions or perceived accuracy of oneself or the model. Our data suggest that factors such as task domain and self-confidence influence algorithm use more so than model experience. Individual differences and situational factors should be considered important aspects that influence forecasters' decisions to rely on predictions from a model or to instead use their own estimates, which can lead to sub-optimal performance.

摘要

先前的研究表明,预测算法的使用经验会降低对算法的依赖行为(即依赖算法的行为)。然而,模型使用经验对依赖意图(即依赖算法的意愿)的影响尚未得到探索。此外,还提出了其他因素,如自信和领域知识,会影响对算法的依赖。本研究的目的是检验统计模型的使用经验、任务领域(二手车销售、大学平均绩点(GPA)、GitHub 拉取请求)和自信如何影响依赖意图、依赖行为以及对自己和模型的估计准确性的感知。参与者(N=347)在线招募,并完成了一项预测任务。结果表明,自信和任务领域对依赖意图、依赖行为和对自己和模型的估计准确性的感知有统计学上的显著影响。然而,与之前的发现不同,模型经验并没有显著影响依赖行为,也没有导致对自己或模型的依赖意图或估计准确性的显著变化。我们的数据表明,任务领域和自信等因素比模型经验更能影响算法的使用。个体差异和情境因素应被视为影响预测者依赖模型预测或使用自己估计的决策的重要因素,这可能导致次优表现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验