文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

隐私保护乳腺癌分类:联邦迁移学习方法。

Privacy-Preserving Breast Cancer Classification: A Federated Transfer Learning Approach.

机构信息

Department of Information Technology, R.M.K Engineering College, Chennai, Tamil Nadu, India.

Department of Computer Science and Engineering, Rajalakshmi Engineering College, Chennai, Tamil Nadu, India.

出版信息

J Imaging Inform Med. 2024 Aug;37(4):1488-1504. doi: 10.1007/s10278-024-01035-8. Epub 2024 Feb 29.


DOI:10.1007/s10278-024-01035-8
PMID:38424280
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11300768/
Abstract

Breast cancer is deadly cancer causing a considerable number of fatalities among women in worldwide. To enhance patient outcomes as well as survival rates, early and accurate detection is crucial. Machine learning techniques, particularly deep learning, have demonstrated impressive success in various image recognition tasks, including breast cancer classification. However, the reliance on large labeled datasets poses challenges in the medical domain due to privacy issues and data silos. This study proposes a novel transfer learning approach integrated into a federated learning framework to solve the limitations of limited labeled data and data privacy in collaborative healthcare settings. For breast cancer classification, the mammography and MRO images were gathered from three different medical centers. Federated learning, an emerging privacy-preserving paradigm, empowers multiple medical institutions to jointly train the global model while maintaining data decentralization. Our proposed methodology capitalizes on the power of pre-trained ResNet, a deep neural network architecture, as a feature extractor. By fine-tuning the higher layers of ResNet using breast cancer datasets from diverse medical centers, we enable the model to learn specialized features relevant to different domains while leveraging the comprehensive image representations acquired from large-scale datasets like ImageNet. To overcome domain shift challenges caused by variations in data distributions across medical centers, we introduce domain adversarial training. The model learns to minimize the domain discrepancy while maximizing classification accuracy, facilitating the acquisition of domain-invariant features. We conducted extensive experiments on diverse breast cancer datasets obtained from multiple medical centers. Comparative analysis was performed to evaluate the proposed approach against traditional standalone training and federated learning without domain adaptation. When compared with traditional models, our proposed model showed a classification accuracy of 98.8% and a computational time of 12.22 s. The results showcase promising enhancements in classification accuracy and model generalization, underscoring the potential of our method in improving breast cancer classification performance while upholding data privacy in a federated healthcare environment.

摘要

乳腺癌是一种致命的癌症,在全球范围内导致了相当数量的女性死亡。为了提高患者的治疗效果和生存率,早期和准确的检测至关重要。机器学习技术,特别是深度学习,在各种图像识别任务中取得了令人瞩目的成功,包括乳腺癌分类。然而,由于隐私问题和数据孤岛,在医疗领域中,对大量标记数据集的依赖带来了挑战。本研究提出了一种新的迁移学习方法,集成到联邦学习框架中,以解决协作医疗环境中有限标记数据和数据隐私的限制。对于乳腺癌分类,从三个不同的医疗中心收集了乳房 X 光照片和 MRO 图像。联邦学习是一种新兴的隐私保护范例,使多个医疗机构能够在保持数据去中心化的同时共同训练全局模型。我们提出的方法利用预先训练的 ResNet 的强大功能,ResNet 是一种深度神经网络架构,作为特征提取器。通过使用来自不同医疗中心的乳腺癌数据集微调 ResNet 的高层,我们使模型能够学习与不同领域相关的专业特征,同时利用来自像 ImageNet 这样的大规模数据集获取的全面图像表示。为了克服不同医疗中心数据分布差异引起的领域转移挑战,我们引入了域对抗训练。模型学习最小化域差异,同时最大化分类准确性,从而促进获取域不变特征。我们在从多个医疗中心获得的各种乳腺癌数据集上进行了广泛的实验。对传统的独立训练和无域自适应的联邦学习进行了对比分析,以评估所提出的方法。与传统模型相比,我们提出的模型的分类准确率达到了 98.8%,计算时间为 12.22 秒。结果显示了在分类准确性和模型泛化方面的显著增强,突出了我们的方法在保持联邦医疗环境中数据隐私的同时提高乳腺癌分类性能的潜力。

相似文献

[1]
Privacy-Preserving Breast Cancer Classification: A Federated Transfer Learning Approach.

J Imaging Inform Med. 2024-8

[2]
Integrated approach of federated learning with transfer learning for classification and diagnosis of brain tumor.

BMC Med Imaging. 2024-5-15

[3]
Gradient Matching Federated Domain Adaptation for Brain Image Classification.

IEEE Trans Neural Netw Learn Syst. 2024-6

[4]
Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results.

Med Image Anal. 2020-10

[5]
Memory-aware curriculum federated learning for breast cancer classification.

Comput Methods Programs Biomed. 2023-2

[6]
Role of inter- and extra-lesion tissue, transfer learning, and fine-tuning in the robust classification of breast lesions.

Sci Rep. 2024-10-1

[7]
Model-based federated learning for accurate MR image reconstruction from undersampled k-space data.

Comput Biol Med. 2024-9

[8]
Automated Breast Cancer Detection Models Based on Transfer Learning.

Sensors (Basel). 2022-1-24

[9]
Compatible-domain Transfer Learning for Breast Cancer Classification with Limited Annotated Data.

Comput Biol Med. 2023-3

[10]
Enhanced breast mass mammography classification approach based on pre-processing and hybridization of transfer learning models.

J Cancer Res Clin Oncol. 2023-11

引用本文的文献

[1]
Mamba-fusion for privacy-preserving disease prediction.

Sci Rep. 2025-7-1

[2]
Design of Block-Scrambling-Based privacy protection mechanism in healthcare using fusion of transfer learning models with Hippopotamus optimization algorithm.

Sci Rep. 2025-7-1

[3]
Hierarchical Swin Transformer Ensemble with Explainable AI for Robust and Decentralized Breast Cancer Diagnosis.

Bioengineering (Basel). 2025-6-13

本文引用的文献

[1]
A Deep Learning Method for Breast Cancer Classification in the Pathology Images.

IEEE J Biomed Health Inform. 2022-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索