Suppr超能文献

三维生物打印固体肿瘤芯片中细胞球体浸润的细胞外基质调节。

Extracellular matrix regulation of cell spheroid invasion in a 3D bioprinted solid tumor-on-a-chip.

机构信息

Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.

Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.

出版信息

Acta Biomater. 2024 Sep 15;186:156-166. doi: 10.1016/j.actbio.2024.07.040. Epub 2024 Aug 7.

Abstract

Tumor organoids and tumors-on-chips can be built by placing patient-derived cells within an engineered extracellular matrix (ECM) for personalized medicine. The engineered ECM influences the tumor response, and understanding the ECM-tumor relationship accelerates translating tumors-on-chips into drug discovery and development. In this work, we tuned the physical and structural characteristics of ECM in a 3D bioprinted soft-tissue sarcoma microtissue. We formed cell spheroids at a controlled size and encapsulated them into our gelatin methacryloyl (GelMA)-based bioink to make perfusable hydrogel-based microfluidic chips. We then demonstrated the scalability and customization flexibility of our hydrogel-based chip via engineering tools. A multiscale physical and structural data analysis suggested a relationship between cell invasion response and bioink characteristics. Tumor cell invasive behavior and focal adhesion properties were observed in response to varying polymer network densities of the GelMA-based bioink. Immunostaining assays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) helped assess the bioactivity of the microtissue and measure the cell invasion. The RT-qPCR data showed higher expressions of HIF-1α, CD44, and MMP2 genes in a lower polymer density, highlighting the correlation between bioink structural porosity, ECM stiffness, and tumor spheroid response. This work is the first step in modeling STS tumor invasiveness in hydrogel-based microfluidic chips. STATEMENT OF SIGNIFICANCE: We optimized an engineering protocol for making tumor spheroids at a controlled size, embedding spheroids into a gelatin-based matrix, and constructing a perfusable microfluidic device. A higher tumor invasion was observed in a low-stiffness matrix than a high-stiffness matrix. The physical characterizations revealed how the stiffness is controlled by the density of polymer chain networks and porosity. The biological assays revealed how the structural properties of the gelatin matrix and hypoxia in tumor progression impact cell invasion. This work can contribute to personalized medicine by making more effective, tailored cancer models.

摘要

肿瘤类器官和芯片肿瘤可以通过将患者来源的细胞放置在工程细胞外基质(ECM)中构建,用于个性化医疗。工程 ECM 会影响肿瘤反应,而了解 ECM-肿瘤关系则可以加速将芯片肿瘤转化为药物发现和开发。在这项工作中,我们调整了 3D 生物打印软组织肉瘤微组织中 ECM 的物理和结构特性。我们控制细胞球的大小并将其包埋在我们的明胶甲基丙烯酰(GelMA)基生物墨水中,以制作可灌注水凝胶基微流控芯片。然后,我们通过工程工具展示了我们的水凝胶基芯片的可扩展性和定制灵活性。多尺度物理和结构数据分析表明,细胞侵袭反应与生物墨水特性之间存在关系。观察到肿瘤细胞侵袭行为和焦点粘附特性,以响应 GelMA 基生物墨水的聚合物网络密度变化。免疫染色测定和逆转录定量聚合酶链反应(RT-qPCR)有助于评估微组织的生物活性并测量细胞侵袭。RT-qPCR 数据显示,在较低聚合物密度下,HIF-1α、CD44 和 MMP2 基因的表达更高,突出了生物墨水结构孔隙率、ECM 硬度和肿瘤球状体反应之间的相关性。这项工作是在水凝胶基微流控芯片中模拟 STS 肿瘤侵袭性的第一步。

意义声明

我们优化了一种工程方案,用于控制大小的肿瘤球状体的制造,将球状体嵌入明胶基质中,并构建可灌注的微流控装置。在低刚度基质中观察到更高的肿瘤侵袭性,而在高刚度基质中则观察到更低的肿瘤侵袭性。物理特性揭示了如何通过聚合物链网络的密度和孔隙率来控制刚度。生物学测定揭示了明胶基质的结构特性和肿瘤进展中的缺氧如何影响细胞侵袭。这项工作可以通过制作更有效、定制化的癌症模型为个性化医疗做出贡献。

相似文献

1
Extracellular matrix regulation of cell spheroid invasion in a 3D bioprinted solid tumor-on-a-chip.
Acta Biomater. 2024 Sep 15;186:156-166. doi: 10.1016/j.actbio.2024.07.040. Epub 2024 Aug 7.
2
Gelatin methacryloyl and Laponite bioink for 3D bioprinted organotypic tumor modeling.
Biofabrication. 2023 Jul 20;15(4). doi: 10.1088/1758-5090/ace0db.
3
Multi-material digital light processing bioprinting of hydrogel-based microfluidic chips.
Biofabrication. 2021 Nov 24;14(1). doi: 10.1088/1758-5090/ac2d78.
4
Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
ACS Appl Mater Interfaces. 2020 Oct 7;12(40):44563-44577. doi: 10.1021/acsami.0c15078. Epub 2020 Sep 23.
8
Establishing a Bioink Assessment Protocol: GelMA and Collagen in the Bioprinting of a Potential Intestinal Model.
ACS Biomater Sci Eng. 2025 Apr 14;11(4):2456-2467. doi: 10.1021/acsbiomaterials.5c00034. Epub 2025 Mar 25.
10
Gelatin methacryloyl bioinks for bioprinting nasal cartilage: Balancing mechanical integrity and extracellular matrix formation.
Int J Biol Macromol. 2025 Jun;311(Pt 1):143559. doi: 10.1016/j.ijbiomac.2025.143559. Epub 2025 Apr 26.

引用本文的文献

2
Organoids technology in cancer research: from basic applications to advanced models.
Front Cell Dev Biol. 2025 May 22;13:1569337. doi: 10.3389/fcell.2025.1569337. eCollection 2025.
3
Cancer-on-a-chip for precision cancer medicine.
Lab Chip. 2025 May 16. doi: 10.1039/d4lc01043d.
5
Extracellular matrix stiffness: mechanisms in tumor progression and therapeutic potential in cancer.
Exp Hematol Oncol. 2025 Apr 10;14(1):54. doi: 10.1186/s40164-025-00647-2.
6
Dynamic Tumor Immunology-on-a-Chip for Peripheral Blood-Derived Tumor-Reactive T Cell Expansion.
Research (Wash D C). 2025 Mar 21;8:0639. doi: 10.34133/research.0639. eCollection 2025.

本文引用的文献

1
Clinical Implications and Molecular Features of Extracellular Matrix Networks in Soft Tissue Sarcomas.
Clin Cancer Res. 2024 Aug 1;30(15):3229-3242. doi: 10.1158/1078-0432.CCR-23-3960.
2
Cell encapsulation in gelatin methacryloyl bioinks impairs microscale diffusion properties.
Front Bioeng Biotechnol. 2023 Aug 31;11:1193970. doi: 10.3389/fbioe.2023.1193970. eCollection 2023.
3
Osteosarocma progression in biomimetic matrix with different stiffness: Insights from a three-dimensional printed gelatin methacrylamide hydrogel.
Int J Biol Macromol. 2023 Dec 1;252:126391. doi: 10.1016/j.ijbiomac.2023.126391. Epub 2023 Aug 16.
4
Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets.
Signal Transduct Target Ther. 2023 Jul 31;8(1):282. doi: 10.1038/s41392-023-01501-9.
5
Embedded Bioprinting of Breast Tumor Cells and Organoids Using Low-Concentration Collagen-Based Bioinks.
Adv Healthc Mater. 2023 Oct;12(26):e2300905. doi: 10.1002/adhm.202300905. Epub 2023 Jul 14.
7
Glioblastoma Spheroid Invasion through Soft, Brain-Like Matrices Depends on Hyaluronic Acid-CD44 Interactions.
Adv Healthc Mater. 2023 Jun;12(14):e2203143. doi: 10.1002/adhm.202203143. Epub 2023 Feb 8.
8
Assessing cell migration in hydrogels: An overview of relevant materials and methods.
Mater Today Bio. 2022 Dec 29;18:100537. doi: 10.1016/j.mtbio.2022.100537. eCollection 2023 Feb.
9
Biological role of matrix stiffness in tumor growth and treatment.
J Transl Med. 2022 Nov 22;20(1):540. doi: 10.1186/s12967-022-03768-y.
10
Measuring human mesenchymal stem cell remodeling in hydrogels with a step-change in elastic modulus.
Soft Matter. 2022 Aug 31;18(34):6340-6352. doi: 10.1039/d2sm00717g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验