Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
Acta Biomater. 2024 Sep 15;186:156-166. doi: 10.1016/j.actbio.2024.07.040. Epub 2024 Aug 7.
Tumor organoids and tumors-on-chips can be built by placing patient-derived cells within an engineered extracellular matrix (ECM) for personalized medicine. The engineered ECM influences the tumor response, and understanding the ECM-tumor relationship accelerates translating tumors-on-chips into drug discovery and development. In this work, we tuned the physical and structural characteristics of ECM in a 3D bioprinted soft-tissue sarcoma microtissue. We formed cell spheroids at a controlled size and encapsulated them into our gelatin methacryloyl (GelMA)-based bioink to make perfusable hydrogel-based microfluidic chips. We then demonstrated the scalability and customization flexibility of our hydrogel-based chip via engineering tools. A multiscale physical and structural data analysis suggested a relationship between cell invasion response and bioink characteristics. Tumor cell invasive behavior and focal adhesion properties were observed in response to varying polymer network densities of the GelMA-based bioink. Immunostaining assays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) helped assess the bioactivity of the microtissue and measure the cell invasion. The RT-qPCR data showed higher expressions of HIF-1α, CD44, and MMP2 genes in a lower polymer density, highlighting the correlation between bioink structural porosity, ECM stiffness, and tumor spheroid response. This work is the first step in modeling STS tumor invasiveness in hydrogel-based microfluidic chips. STATEMENT OF SIGNIFICANCE: We optimized an engineering protocol for making tumor spheroids at a controlled size, embedding spheroids into a gelatin-based matrix, and constructing a perfusable microfluidic device. A higher tumor invasion was observed in a low-stiffness matrix than a high-stiffness matrix. The physical characterizations revealed how the stiffness is controlled by the density of polymer chain networks and porosity. The biological assays revealed how the structural properties of the gelatin matrix and hypoxia in tumor progression impact cell invasion. This work can contribute to personalized medicine by making more effective, tailored cancer models.
肿瘤类器官和芯片肿瘤可以通过将患者来源的细胞放置在工程细胞外基质(ECM)中构建,用于个性化医疗。工程 ECM 会影响肿瘤反应,而了解 ECM-肿瘤关系则可以加速将芯片肿瘤转化为药物发现和开发。在这项工作中,我们调整了 3D 生物打印软组织肉瘤微组织中 ECM 的物理和结构特性。我们控制细胞球的大小并将其包埋在我们的明胶甲基丙烯酰(GelMA)基生物墨水中,以制作可灌注水凝胶基微流控芯片。然后,我们通过工程工具展示了我们的水凝胶基芯片的可扩展性和定制灵活性。多尺度物理和结构数据分析表明,细胞侵袭反应与生物墨水特性之间存在关系。观察到肿瘤细胞侵袭行为和焦点粘附特性,以响应 GelMA 基生物墨水的聚合物网络密度变化。免疫染色测定和逆转录定量聚合酶链反应(RT-qPCR)有助于评估微组织的生物活性并测量细胞侵袭。RT-qPCR 数据显示,在较低聚合物密度下,HIF-1α、CD44 和 MMP2 基因的表达更高,突出了生物墨水结构孔隙率、ECM 硬度和肿瘤球状体反应之间的相关性。这项工作是在水凝胶基微流控芯片中模拟 STS 肿瘤侵袭性的第一步。
我们优化了一种工程方案,用于控制大小的肿瘤球状体的制造,将球状体嵌入明胶基质中,并构建可灌注的微流控装置。在低刚度基质中观察到更高的肿瘤侵袭性,而在高刚度基质中则观察到更低的肿瘤侵袭性。物理特性揭示了如何通过聚合物链网络的密度和孔隙率来控制刚度。生物学测定揭示了明胶基质的结构特性和肿瘤进展中的缺氧如何影响细胞侵袭。这项工作可以通过制作更有效、定制化的癌症模型为个性化医疗做出贡献。