Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Cardiovascular Surgery, University Hospital of Mainz, Mainz, Germany.
Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
J Heart Lung Transplant. 2024 Dec;43(12):1932-1944. doi: 10.1016/j.healun.2024.07.022. Epub 2024 Aug 7.
Xenotransplantation has made significant advances recently using pigs genetically engineered to remove carbohydrate antigens, either alone or with addition of various human complement, coagulation, and anti-inflammatory ''transgenes''. Here we evaluated results associated with gene-edited (GE) pig hearts transplanted in baboons using an established costimulation-based immunosuppressive regimen and a cold-perfused graft preservation technique.
Eight baboons received heterotopic abdominal heart transplants from 3-GE (GalKO.β4GalNT2KO.hCD55, n = 3), 9-GE (GalKO.β4GalNT2KO.GHRKO.hCD46.hCD55. TBM.EPCR.hCD47. HO-1, n = 3) or 10-G (9-GE+CMAHKO, n = 2) pigs using Steen's cold continuous perfusion for ischemia minimization. Immunosuppression (IS) included induction with anti-thymocyte globulin and αCD20, ongoing αCD154, MMF, and tapered corticosteroid.
All three 3-GE grafts functioned well initially, but failed within 5 days. One 9-GE graft was lost intraoperatively due to a technical issue and another was lost at POD 13 due to antibody mediated rejection (AMR) in a baboon with a strongly positive pre-operative cross-match. One 10-GE heart failed at POD113 with combined cellular and antibody mediated rejection. One 9-GE and one 10-GE hearts had preserved graft function with normal myocardium on protocol biopsies, but exhibited slowly progressive graft hypertrophy until elective necropsy at POD393 and 243 respectively. Elevated levels of IL-6, MCP-1, C-reactive protein, and human thrombomodulin were variably associated with conditioning, the transplant procedure, and clinically significant postoperative events.
Relative to reference genetics without thrombo-regulatory and anti-inflammatory gene expression, 9- or 10-GE pig hearts exhibit promising performance in the context of a clinically applicable regimen including ischemia minimization and αCD154-based IS, justifying further evaluation in an orthotopic model.
最近,通过基因工程改造去除碳水化合物抗原的猪在异种移植方面取得了重大进展,这些猪单独使用或与各种人类补体、凝血和抗炎“转基因”一起使用。在这里,我们使用已建立的基于共刺激的免疫抑制方案和冷灌注移植物保存技术,评估了用于狒狒的基因编辑(GE)猪心脏移植的结果。
八只狒狒接受了来自 3-GE(GalKO.β4GalNT2KO.hCD55,n=3)、9-GE(GalKO.β4GalNT2KO.GHRKO.hCD46.hCD55.TBM.EPCR.hCD47.HO-1,n=3)或 10-G(9-GE+CMAHKO,n=2)猪的异位腹部心脏移植,使用 Steen 的冷连续灌注进行最小化缺血。免疫抑制(IS)包括抗胸腺细胞球蛋白和αCD20 诱导,持续的αCD154、MMF 和逐渐减少的皮质类固醇。
所有三个 3-GE 移植物最初功能良好,但在 5 天内失败。一个 9-GE 移植物由于技术问题在手术中丢失,另一个在 POD 13 由于术前交叉配型阳性的狒狒的抗体介导排斥反应(AMR)丢失。一个 10-GE 心脏在 POD113 时因细胞和抗体介导的排斥反应而失败。一个 9-GE 和一个 10-GE 心脏在方案活检中具有正常的心肌,但表现出逐渐进展的移植物肥大,直到分别在 POD393 和 POD243 进行选择性尸检。IL-6、MCP-1、C 反应蛋白和人血栓调节蛋白的水平升高与调理、移植过程和临床上显著的术后事件有关。
与没有血栓调节和抗炎基因表达的参考遗传学相比,9 或 10-GE 猪心脏在包括最小化缺血和基于αCD154 的 IS 的临床适用方案中表现出有希望的性能,这证明了在原位模型中进一步评估是合理的。