Suppr超能文献

一种基于同轴屏蔽纺织超材料的稳健近场人体区域网络。

A robust near-field body area network based on coaxially-shielded textile metamaterial.

作者信息

Zhu Xia, Wu Ke, Xie Xiaohang, Anderson Stephan W, Zhang Xin

机构信息

Department of Mechanical Engineering, Boston University, Boston, MA, USA.

Photonics Center, Boston University, Boston, MA, USA.

出版信息

Nat Commun. 2024 Aug 3;15(1):6589. doi: 10.1038/s41467-024-51061-x.

Abstract

A body area network involving wearable sensors distributed around the human body can continuously monitor physiological signals, finding applications in personal healthcare and athletic evaluation. Existing solutions for near-field body area networks, while facilitating reliable and secure interconnection among battery-free sensors, face challenges including limited spectral stability against external interference. Here we demonstrate a textile metamaterial featuring a coaxially-shielded internal structure designed to mitigate interference from extraneous loadings. The metamaterial can be patterned onto clothing to form a scalable, customizable network, enabling communication between near-field reading devices and battery-free sensing nodes placed within the network. Proof of concept demonstration shows the metamaterial's robustness against mechanical deformation and exposure to lossy, conductive saline solutions, underscoring its potential applications in wet environments, particularly in athletic activities involving water or significant perspiration, offering insights for the future development of radio frequency components for a robust body area network at a system level.

摘要

一种涉及分布在人体周围的可穿戴传感器的体域网能够持续监测生理信号,在个人医疗保健和运动评估中得到应用。现有的近场体域网解决方案虽然有助于实现无电池传感器之间可靠且安全的互连,但面临着包括对外界干扰的光谱稳定性有限等挑战。在此,我们展示了一种具有同轴屏蔽内部结构的纺织超材料,其设计目的是减轻外部负载的干扰。这种超材料可以被图案化到衣物上,形成一个可扩展、可定制的网络,实现近场读取设备与置于该网络内的无电池传感节点之间的通信。概念验证演示表明,该超材料对机械变形以及暴露于有损导电盐溶液具有鲁棒性,突出了其在潮湿环境中的潜在应用,特别是在涉及水或大量出汗的体育活动中,为系统级强大体域网的射频组件未来发展提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f81/11297955/b85be7d581bb/41467_2024_51061_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验