Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States.
Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States.
ACS Appl Bio Mater. 2024 Aug 19;7(8):5662-5678. doi: 10.1021/acsabm.4c00751. Epub 2024 Aug 4.
Quercetin, recognized for its antioxidant, anti-inflammatory, and antibacterial properties, faces limited biomedical application due to its low solubility. Cotton, a preferred wound dressing material over synthetic ones, lacks inherent antibacterial and wound-healing attributes and can benefit from quercetin features. This study explores the potential of overcoming these challenges through the inclusion complexation of quercetin with cyclodextrins (CDs) and the development of a nanofibrous coating on a cotton nonwoven textile. Hydroxypropyl-beta-cyclodextrin (HP-β-CD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) formed inclusion complexes of quercetin, with chitosan added to enhance antibacterial properties. Phase solubility results showed that inclusion complexation can enhance quercetin solubility up to 20 times, with HP-γ-CD forming a more stable inclusion complexation compared with HP-β-CD. Electrospinning of the nanofibers from HP-β-CD/Quercetin and HP-γ-CD/Quercetin aqueous solutions without the use of a polymeric matrix yielded a uniform, smooth fiber morphology. The structural and thermal analyses of the HP-β-CD/Quercetin and HP-γ-CD/Quercetin nanofibers confirmed the presence of inclusion complexes between quercetin and each of the CDs (HP-β-CD and HP-γ-CD). Moreover, HP-β-CD/Quercetin and HP-γ-CD/Quercetin nanofibers showed a near-complete loading efficiency of quercetin and followed a fast-releasing profile of quercetin. Both HP-β-CD/Quercetin and HP-γ-CD/Quercetin nanofibers showed significantly higher antioxidant activity compared to pristine quercetin. The HP-β-CD/Quercetin and HP-γ-CD/Quercetin nanofibers also showed antibacterial activity, and with the addition of chitosan in the HP-γ-CD/Quercetin system, the Chitosan/HP-γ-CD/Quercetin nanofibers completely eliminated the investigated bacteria species. The nanofibers were nontoxic and well-tolerated by cells, and exploiting the quercetin and chitosan anti-inflammatory activities resulted in the downregulation of IL-6 and NO secretion in both immune as well as regenerative cells. Overall, CD inclusion complexation markedly enhances quercetin solubility, resulting in a biofunctional antioxidant, antibacterial, and anti-inflammatory wound dressing through a nanofibrous coating on cotton textiles.
槲皮素具有抗氧化、抗炎和抗菌特性,但其溶解度低,限制了其在生物医学中的应用。棉花是一种优于合成材料的首选伤口敷料材料,但缺乏内在的抗菌和伤口愈合特性,可以受益于槲皮素的特性。本研究通过将槲皮素与环糊精(CDs)形成包合物以及在棉非织造纺织品上开发纳米纤维涂层来探索克服这些挑战的潜力。羟丙基-β-环糊精(HP-β-CD)和羟丙基-γ-环糊精(HP-γ-CD)与壳聚糖一起形成槲皮素的包合物,以增强抗菌性能。相溶解度结果表明,包合作用可将槲皮素的溶解度提高 20 倍,与 HP-β-CD 相比,HP-γ-CD 形成更稳定的包合作用。从 HP-β-CD/槲皮素和 HP-γ-CD/槲皮素的水溶液中无需使用聚合物基质即可进行电纺,得到均匀、光滑的纤维形态。HP-β-CD/槲皮素和 HP-γ-CD/槲皮素纳米纤维的结构和热分析证实了槲皮素与每种 CD(HP-β-CD 和 HP-γ-CD)之间存在包合物。此外,HP-β-CD/槲皮素和 HP-γ-CD/槲皮素纳米纤维对槲皮素的负载效率接近 100%,并呈现快速释放槲皮素的特性。与原始槲皮素相比,HP-β-CD/槲皮素和 HP-γ-CD/槲皮素纳米纤维均显示出更高的抗氧化活性。HP-β-CD/槲皮素和 HP-γ-CD/槲皮素纳米纤维也具有抗菌活性,并且在 HP-γ-CD/槲皮素系统中添加壳聚糖时,壳聚糖/HP-γ-CD/槲皮素纳米纤维完全消除了所研究的细菌种类。纳米纤维对细胞无毒且耐受性良好,利用槲皮素和壳聚糖的抗炎活性导致免疫和再生细胞中 IL-6 和 NO 分泌下调。总的来说,CD 包合作用显著提高了槲皮素的溶解度,通过在棉纺织品上进行纳米纤维涂层,得到了一种具有生物功能的抗氧化、抗菌和抗炎伤口敷料。