Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, China.
Department of Critical Care Medicine, ZhuJiang Hospital of Southern Medical University, Guangzhou, China.
J Med Internet Res. 2024 May 1;26:e51354. doi: 10.2196/51354.
Acute kidney disease (AKD) affects more than half of critically ill elderly patients with acute kidney injury (AKI), which leads to worse short-term outcomes.
We aimed to establish 2 machine learning models to predict the risk and prognosis of AKD in the elderly and to deploy the models as online apps.
Data on elderly patients with AKI (n=3542) and AKD (n=2661) from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database were used to develop 2 models for predicting the AKD risk and in-hospital mortality, respectively. Data collected from Xiangya Hospital of Central South University were for external validation. A bootstrap method was used for internal validation to obtain relatively stable results. We extracted the indicators within 24 hours of the first diagnosis of AKI and the fluctuation range of some indicators, namely delta (day 3 after AKI minus day 1), as features. Six machine learning algorithms were used for modeling; the area under the receiver operating characteristic curve (AUROC), decision curve analysis, and calibration curve for evaluating; Shapley additive explanation (SHAP) analysis for visually interpreting; and the Heroku platform for deploying the best-performing models as web-based apps.
For the model of predicting the risk of AKD in elderly patients with AKI during hospitalization, the Light Gradient Boosting Machine (LightGBM) showed the best overall performance in the training (AUROC=0.844, 95% CI 0.831-0.857), internal validation (AUROC=0.853, 95% CI 0.841-0.865), and external (AUROC=0.755, 95% CI 0.699-0.811) cohorts. In addition, LightGBM performed well for the AKD prognostic prediction in the training (AUROC=0.861, 95% CI 0.843-0.878), internal validation (AUROC=0.868, 95% CI 0.851-0.885), and external (AUROC=0.746, 95% CI 0.673-0.820) cohorts. The models deployed as online prediction apps allowed users to predict and provide feedback to submit new data for model iteration. In the importance ranking and correlation visualization of the model's top 10 influencing factors conducted based on the SHAP value, partial dependence plots revealed the optimal cutoff of some interventionable indicators. The top 5 factors predicting the risk of AKD were creatinine on day 3, sepsis, delta blood urea nitrogen (BUN), diastolic blood pressure (DBP), and heart rate, while the top 5 factors determining in-hospital mortality were age, BUN on day 1, vasopressor use, BUN on day 3, and partial pressure of carbon dioxide (PaCO).
We developed and validated 2 online apps for predicting the risk of AKD and its prognostic mortality in elderly patients, respectively. The top 10 factors that influenced the AKD risk and mortality during hospitalization were identified and explained visually, which might provide useful applications for intelligent management and suggestions for future prospective research.
急性肾损伤(AKI)影响了半数以上的老年重症患者,导致急性肾损伤(AKD),从而导致短期预后更差。
我们旨在建立 2 个机器学习模型来预测老年 AKI 患者的 AKD 风险和预后,并将模型部署为在线应用程序。
使用来自医疗信息市场用于重症监护 IV(MIMIC-IV)数据库的老年 AKI(n=3542)和 AKD(n=2661)患者的数据来分别开发预测 AKD 风险和院内死亡率的模型。来自中南大学湘雅医院的数据用于外部验证。使用 bootstrap 方法进行内部验证,以获得相对稳定的结果。我们提取了 AKI 首次诊断后 24 小时内的指标以及一些指标的波动范围,即 delta(AKI 后第 3 天减去第 1 天),作为特征。使用 6 种机器学习算法进行建模;使用接受者操作特征曲线下的面积(AUROC)、决策曲线分析和校准曲线进行评估;使用 Shapley 加性解释(SHAP)分析进行可视化解释;并使用 Heroku 平台将性能最佳的模型部署为基于 Web 的应用程序。
对于预测 AKI 住院老年患者 AKD 风险的模型,Light Gradient Boosting Machine(LightGBM)在训练(AUROC=0.844,95%CI 0.831-0.857)、内部验证(AUROC=0.853,95%CI 0.841-0.865)和外部验证(AUROC=0.755,95%CI 0.699-0.811)中均表现出最佳的整体性能。此外,LightGBM 在训练(AUROC=0.861,95%CI 0.843-0.878)、内部验证(AUROC=0.868,95%CI 0.851-0.885)和外部(AUROC=0.746,95%CI 0.673-0.820)队列中对 AKD 预后预测表现良好。部署为在线预测应用程序的模型允许用户预测并提供反馈,以提交新数据进行模型迭代。基于 SHAP 值进行的模型前 10 个影响因素的重要性排名和相关性可视化表明,一些可干预指标的最佳截断值。预测 AKD 风险的前 5 个因素是第 3 天的肌酐、败血症、delta 血尿素氮(BUN)、舒张压(DBP)和心率,而决定院内死亡率的前 5 个因素是年龄、第 1 天的 BUN、血管加压素使用、第 3 天的 BUN 和二氧化碳分压(PaCO)。
我们分别开发和验证了 2 个用于预测老年患者 AKD 风险及其预后死亡率的在线应用程序。确定并可视化解释了影响住院期间 AKD 风险和死亡率的前 10 个因素,这可能为智能管理提供有用的应用,并为未来的前瞻性研究提供建议。