Suppr超能文献

基于生物素-链霉亲和素技术的人工金属酶:酶级联反应和定向进化。

Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.

机构信息

Department of Chemistry , University of Basel , BPR1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland.

出版信息

Acc Chem Res. 2019 Mar 19;52(3):585-595. doi: 10.1021/acs.accounts.8b00618. Epub 2019 Feb 8.

Abstract

Artificial metalloenzymes (ArMs) result from anchoring a metal-containing moiety within a macromolecular scaffold (protein or oligonucleotide). The resulting hybrid catalyst combines attractive features of both homogeneous catalysts and enzymes. This strategy includes the possibility of optimizing the reaction by both chemical (catalyst design) and genetic means leading to achievement of a novel degree of (enantio)selectivity, broadening of the substrate scope, or increased activity, among others. In the past 20 years, the Ward group has exploited, among others, the biotin-(strept)avidin technology to localize a catalytic moiety within a well-defined protein environment. Streptavidin has proven versatile for the implementation of ArMs as it offers the following features: (i) it is an extremely robust protein scaffold, amenable to extensive genetic manipulation and mishandling, (ii) it can be expressed in E. coli to very high titers (up to >8 g·L in fed-batch cultures), and (iii) the cavity surrounding the biotinylated cofactor is commensurate with the size of a typical metal-catalyzed transition state. Relying on a chemogenetic optimization strategy, varying the orientation and the nature of the biotinylated cofactor within genetically engineered streptavidin, 12 reactions have been reported by the Ward group thus far. Recent efforts within our group have focused on extending the ArM technology to create complex systems for integration into biological cascade reactions and in vivo. With the long-term goal of complementing in vivo natural enzymes with ArMs, we summarize herein three complementary research lines: (i) With the aim of mimicking complex cross-regulation mechanisms prevalent in metabolism, we have engineered enzyme cascades, including cross-regulated reactions, that rely on ArMs. These efforts highlight the remarkable (bio)compatibility and complementarity of ArMs with natural enzymes. (ii) Additionally, multiple-turnover catalysis in the cytoplasm of aerobic organisms was achieved with ArMs that are compatible with a glutathione-rich environment. This feat is demonstrated in HEK-293T cells that are engineered with a gene switch that is upregulated by an ArM equipped with a cell-penetrating module. (iii) Finally, ArMs offer the fascinating prospect of "endowing organometallic chemistry with a genetic memory." With this goal in mind, we have identified E. coli's periplasmic space and surface display to compartmentalize an ArM, while maintaining the critical phenotype-genotype linkage. This strategy offers a straightforward means to optimize by directed evolution the catalytic performance of ArMs. Five reactions have been optimized following these compartmentalization strategies: ruthenium-catalyzed olefin metathesis, ruthenium-catalyzed deallylation, iridium-catalyzed transfer hydrogenation, dirhodium-catalyzed cyclopropanation and carbene insertion in C-H bonds. Importantly, >100 turnovers were achieved with ArMs in E. coli whole cells, highlighting the multiple turnover catalytic nature of these systems.

摘要

人工金属酶(ArMs)是通过将含有金属的部分锚定在大分子支架(蛋白质或寡核苷酸)内而产生的。由此产生的杂交催化剂结合了均相催化剂和酶的优点。该策略包括通过化学(催化剂设计)和遗传手段来优化反应的可能性,从而实现新的(对映)选择性、拓宽底物范围或提高活性等。在过去的 20 年中,Ward 小组利用生物素-(链霉)亲和素技术将催化部分定位在明确定义的蛋白质环境中。链霉亲和素对于实施 ArMs 非常有用,因为它具有以下特点:(i)它是一种极其坚固的蛋白质支架,可进行广泛的遗传操作和处理,(ii)它可以在大肠杆菌中表达到非常高的滴度(在补料分批培养中高达>8g·L),(iii)围绕生物素化辅因子的腔与典型的金属催化过渡态的大小相当。依赖于化学遗传优化策略,通过基因工程化的链霉亲和素改变生物素化辅因子的取向和性质,Ward 小组迄今为止已经报道了 12 种反应。我们小组最近的努力集中在将 ArM 技术扩展到用于整合到生物级联反应和体内的复杂系统中。为了用 ArMs 补充体内天然酶,我们总结了以下三个互补的研究方向:(i)为了模拟代谢中普遍存在的复杂交叉调节机制,我们设计了包括交叉调节反应在内的酶级联反应,这些反应依赖于 ArMs。这些努力突出了 ArMs 与天然酶的惊人(生物)相容性和互补性。(ii)此外,通过与富含谷胱甘肽的环境兼容的 ArMs,在需氧生物的细胞质中实现了多次转化催化。这一壮举在经过基因开关工程改造的 HEK-293T 细胞中得到了证明,该基因开关通过配备细胞穿透模块的 ArM 被上调。(iii)最后,ArMs 提供了“赋予有机金属化学以遗传记忆”的迷人前景。考虑到这一目标,我们已经确定了大肠杆菌的周质空间和表面展示,以将 ArM 分隔开,同时保持关键的表型-基因型联系。这种策略提供了一种通过定向进化优化 ArM 催化性能的直接方法。在这些分区策略之后,已经优化了五个反应:钌催化的烯烃复分解、钌催化的去烯丙基化、铱催化的转移氢化、二钌催化的环丙烷化和碳-氢键中的卡宾插入。重要的是,在大肠杆菌全细胞中使用 ArMs 实现了>100 次转化,突出了这些系统的多次转化催化性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfc5/6427477/711706ef65d5/ar-2018-00618f_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验