Suppr超能文献

人工金属酶:反应范围与优化策略。

Artificial Metalloenzymes: Reaction Scope and Optimization Strategies.

机构信息

Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland.

Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States.

出版信息

Chem Rev. 2018 Jan 10;118(1):142-231. doi: 10.1021/acs.chemrev.7b00014. Epub 2017 Jul 17.

Abstract

The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.

摘要

自 20 世纪 70 年代末以来,人们一直在探索将合成的、催化功能齐全的金属辅因子整合到蛋白质支架中,以生成人工金属酶 (ArM)。在随后的几年中,由于有机金属合成和蛋白质工程可用的工具有限,进展受到限制。这两个领域的进步,再加上对结合均相催化和酶催化的诱人特征的潜在好处的认识不断提高,导致从 21 世纪初开始,人们对 ArM 的兴趣再次高涨。潜在的 ArM 性质中最有趣的也许是它们赋予均相催化剂遗传记忆的能力。事实上,将均相催化剂整合到遗传编码的支架中提供了通过定向进化来提高 ArM 性能的机会。这种能力反过来又可以提高 ArM 的效率,类似于从天然酶获得的改进,提供适用于实际应用的系统,并更深入地了解第二配位球相互作用在有机金属催化中的作用。自 21 世纪初复兴以来,人工金属酶的不同方面已经得到了广泛的回顾和强调。我们的目的是提供截至 2016 年 12 月的该领域所有工作的全面概述,根据反应类别进行组织。由于 ArM 催化的非天然反应范围广泛,因此使用官能团转化分类法进行了此操作。该综述首先概述了迄今为止用于创建 ArM 的蛋白质和锚固策略,然后回顾了历史。接下来概述了 ArM 催化的反应,并进行了批判性的总结。这种分析允许比较使用不同金属辅因子锚固策略、辅助因子、蛋白质支架和诱变策略构建的 ArM 催化的类似反应。这些数据将用于构建一个 ArM 的可搜索网站,由作者定期更新。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验